Volume 51 - Article 18 | Pages 595–624
Makeham mortality models as mixtures: Advancing mortality estimations through competing risks frameworks
By Silvio Cabral Patricio, Trifon Missov
References
Beard, R. (1959). Notes on some mathematical mortality models. In: Wolstenholme, G. and O’Connor, M. (eds.). The lifespan of animals. Boston: Little, Brown: 802–811.
Bebbington, M., Lai, C.D., and Zitikis, R. (2007). Modeling human mortality using mixtures of bathtub shaped failure distributions. Journal of Theoretical Biology 245(3): 528–538.
Berman, S.M. (1963). Note on extreme values, competing risks and semi-Markov processes. The Annals of Mathematical Statistics 34(3): 1104–1106.
Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. ArXiv preprint arXiv:1701.02434.
Brillinger, D.R. (1986). A biometrics invited paper with discussion: The natural variability of vital rates and associated statistics. Biometrics 42(4): 693–734.
Bühlmann, P. and Van De Geer, S. (2011). Statistics for high-dimensional data: Methods, theory and applications. Berlin: Springer Science & Business Media.
Castellares, F., Patricio, S., and Lemonte, A.J. (2022). On the Gompertz–Makeham law: A useful mortality model to deal with human mortality. Brazilian Journal of Probability and Statistics 36(3): 613–639.
Castellares, F., Patricio, S.C., and Lemonte, A.J. (2020). On gamma-Gompertz life expectancy. Statistics and Probability Letters 165: 108832.
Castellares, F., Patricio, S.C., Lemonte, A.J., and Queiroz, B.L. (2020). On closed-form expressions to Gompertz–Makeham life expectancy. Theoretical Population Biology 134: 53–60.
Chiang, C.L. (ed.) (1961). On the probability of death from specific causes in the presence of competing risks. Berkeley, CA: University of California Press (Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability).
Cox, D.R. (1959). The analysis of exponentially distributed life-times with two types of failure. Journal of the Royal Statistical Society Series B: Statistical Methodology 21(2): 411–421.
Crowder, M. (1991). On the identifiability crisis in competing risks analysis. Scandinavian Journal of Statistics 18: 223–233.
De Moivre, A. (1731). Annuities upon lives, or, the valuation of annuities upon any number of lives, as also, of reversions: To which is added, an appendix concerning the expectations of life, and probabilities of survivorship. London: Samuel Fuller.
Elandt-Johnson, R.C. (1976). Conditional failure time distributions under competing risk theory with dependent failure times and proportional hazard rates. Scandinavian Actuarial Journal 1976(1): 37–51.
Gail, M. (1975). A review and critique of some models used in competing risk analysis. Biometrics 31(1): 209–222.
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., and Rubin, D.B. (2013). Bayesian data analysis. CRC press.
Gibney, L., DiClemente, R.J., and Vermund, S.H. (2006). Preventing HIV in developing countries: Biomedical and behavioral approaches. Berlin: Springer Science & Business Media.
Gompertz, B. (1825). XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F.R.S. &c. Philosophical Transactions of the Royal Society of London 115: 513–583.
Gumbel, E.J. and Mustafi, C.K. (1967). Some analytical properties of bivariate extremal distributions. Journal of the American Statistical Association 62(318): 569–588.
Hakulinen, T. and Rahiala, M. (1977). An example on the risk dependence and additivity of intensities in the theory of competing risks. Biometrics 33(3): 557–559.
Hamers, F.F., Downs, A.M., Infuso, A., and Brunet, J.B. (1998). Diversity of the HIV/AIDS epidemic in Europe. AIDS 12: S63–S70.
Heligman, L. and Pollard, J. (1980). The age pattern of mortality. Journal of the Institute of Actuaries 107(1): 49–80.
HMD (2023). The human mortality database [electronic resource]. Berkeley and Rostock: University of California at Berkeley and MPIDR.
Hoffman, M.D. and Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15(1): 1593–1623.
Ippolito, G., Galati, V., Serraino, D., and Girardi, E. (2001). The changing picture of the HIV/AIDS epidemic. Annals of the New York Academy of Sciences 946(1): 1–12.
Jodrá, P. (2013). On order statistics from the Gompertz–Makeham distribution and the Lambert W function. Mathematical Modelling and Analysis 18(3): 432–445.
Kalbfleisch, J. and Prentice, R. (2011). The statistical analysis of failure time data. Hoboken, NJ: John Wiley & Sons.
Kannisto, V. (1994). Development of oldest-old mortality, 1950–1990: Evidence from 28 developed countries. Odense: Odense University Press.
Kozusko, F. and Bajzer, Ž (2003). Combining Gompertzian growth and cell population dynamics. Mathematical Biosciences 185(2): 153–167.
Makeham, W.M. (1890). On the further development of Gompertz’s law. Journal of the Institute of Actuaries 28(4): 316–332.
Makeham, W.M. (1867). On the law of mortality. Journal of the Institute of Actuaries 13(6): 325–358.
Makeham, W.M. (1860). On the law of mortality and the construction of annuity tables. Journal of the Institute of Actuaries 8(6): 301–310.
Marshall, A.W. and Olkin, I. (2007). Life distributions. New York: Springer.
Mazzuco, S., Scarpa, B., and Zanotto, L. (2018). A mortality model based on a mixture distribution function. Population Studies 72(2): 191–200.
Mazzuco, S., Suhrcke, M., and Zanotto, L. (2021). How to measure premature mortality? A proposal combining ’relative’ and ’absolute’ approaches. Population Health Metrics 19(41): 1–14.
McLachlan, G.J., Lee, S.X., and Rathnayake, S.I. (2019). Finite mixture models. Annual Review of Statistics and Its Application 6: 355–378.
Missov, T. and Lenart, A. (2013). Gompertz–Makeham life expectancies: Expressions and applications. Theoretical Population Biology 90: 29–35.
Missov, T.I., Lenart, A., Nemeth, L., Canudas-Romo, V., and Vaupel, J.W. (2015). The Gompertz force of mortality in terms of the modal age at death. Demographic Research 32(36): 1031–1048.
Missov, T.I. and Németh, L. (2016). Sensitivity of model-based human mortality measures to exclusion of the Makeham or the frailty parameter. Genus 71(2–3): 113–135.
Moeschberger, M. and David, H. (1971). Life tests under competing causes of failure and the theory of competing risks. Biometrics 27(4): 909–933.
Norström, F. (1997). The Gompertz–Makeham distribution. Umeå: Umeå University.
Olshansky, S.J. and Carnes, B.A. (1997). Ever since Gompertz. Demography 34(1): 1–15.
Patricio, S.C., Castellares, F., and Queiroz, B.L. (2023). Mortality modeling at old-age: A mixture model approach. ArXiv preprint arXiv:2301.01693.
Patricio, S.C. and Missov, T.I. (2023). Using a penalized likelihood to detect mortality deceleration. PLoS ONE 18(11): e0294428.
Pereyra, M. (2019). Revisiting maximum-a-posteriori estimation in log-concave models. SIAM Journal on Imaging Sciences 12(1): 650–670.
Perks, W. (1932). On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries 63(1): 12–57.
Piot, P. (2007). The HIV pandemic: Local and global implications. Oxford: Oxford University Press.
Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). Coda: Convergence diagnosis and output analysis for MCMC. R News 6(1): 7–11.
Rainville, E.D. (1960). Special functions. New York: Macmillan.
Siler, W. (1979). A competing-risk model for animal mortality. Ecology 60(4): 750–757.
Siler, W. (1983). Parameters of mortality in human populations with widely varying life spans. Statistics in Medicine 2(3): 373–380.
Stan Development Team (2016). Rstan: The R interface to stan.
Tawn, J.A. (1988). Bivariate extreme value theory: Models and estimation. Biometrika 75(3): 397–415.
Thiele, T.N. (1871). On a mathematical formula to express the rate of mortality throughout the whole of life, tested by a series of observations made use of by the Danish Life Insurance Company of 1871. Journal of the Institute of Actuaries 16(5): 313–329.
Vaupel, J.W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16: 439–454.
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Bürkner, P.C. (2021). Rank-normalization, folding, and localization: An improved Ȓ for assessing convergence of MCMC (with discussion. Bayesian Analysis 16(2): 667–718.
Wensink, M.J., Wrycza, T.F., and Baudisch, A. (2014). Interaction mortality: Senescence may have evolved because it increases lifespan. PLoS One 9(10): 109638.
Zanotto, L., Canudas-Romo, V., and Mazzuco, S. (2021). A mixture-function mortality model: Illustration of the evolution of premature mortality. European Journal of Population 37(1): 1–27.