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Research Article

On the momentum of pseudostable populations

Gustav Feichtinger1

Roland Rau2

Andreas J. Novák3

Abstract

BACKGROUND
Keyfitz introduced in 1971 the “population momentum” – that is, the amount of further
population growth (decline) if an instantaneous reduction (increase) of fertility to the
replacement level occurred in a stable population.

OBJECTIVE
We wanted to find analytical results for the momentum of pseudostable populations – that
is, populations that relax the strict assumptions of the stable population model and allow
fertility reductions at a constant rate.

METHODS
The formal methods to analyze pseudostable populations are similar to those used in
classical stable population theory. Numerical simulations, based on data from the United
Nations’ World Population Prospects, show that the simplifying assumptions of our for-
mal methods – rectangular survival and childbearing at a single age – do not affect the
qualitative nature of our findings.

RESULTS
The pseudostable population momentum is a monotonously declining S-shaped function
approaching zero with increasing time. Maximum momentum converges to a theoretical
upper limit defined by the ratio of life expectancy at birth and the mean age at child-
bearing. We prove that the timing, when the momentum is one, occurs when the net
reproductive rate is already smaller than one – unlike in stable populations.
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CONCLUSIONS
Pseudostable populations describe the transition from a very young to a very old pop-
ulation. By deriving the population momentum for pseudostable populations, we are
extending the analytical understanding of population dynamics for models that are less
restrictive than the canonical stable population model.

CONTRIBUTION
Some countries in Latin America experience a fertility transition that closely resembles
the assumptions of pseudostable populations. Our analytical results could contribute to
the understanding of population dynamics in these countries.

1. Introduction

The momentum of population growth was introduced by Nathan Keyfitz about half a cen-
tury ago (1971), who was revisiting a discussion among French demographers (Vincent
1945; Bourgeois-Pichat 1968). Keyfitz’s contribution opened up a new avenue of popu-
lation research.4 The answer to a simple question – What would happen to the size of a
population if fertility dropped instantaneously to the replacement level? – baffled many,
and some even refused to believe that Brazil’s population would still grow by about two-
thirds in this scenario as the first author of the present paper vividly recalls from the
1974 World Population Conference in Bucharest. This amount of continued population
growth after an instantaneous decline in the fertility rate to the replacement level is called
‘population momentum’.

Such a sudden drop in fertility is not possible in reality. Nevertheless, the result-
ing growth or decline can be considered as a conservative estimate: Previously growing
populations will still grow by at least the amount specified by the momentum.

Whereas Keyfitz’s analytic expression for estimating population momentum refers
to stable populations, the concept of demographic momentum can be applied to arbitrary
populations. The present paper studies the momentum of growth for a special family of
populations, namely for pseudostable ones.

Stable populations are characterized by time-invariant age-specific fertility and mor-
tality rates. Although such assumptions never prevail in reality over a longer period, the
analytical tractability is a great advantage. There have been several attempts to relax

4 Vincent (1945) applied Lotka’s classical theory to a feature of age distribution that he called “growth poten-
tial” and compared age distributions of different countries by its means. Bourgeois-Pichat (1968) has provided
a substantial expansion of stable theory. He went beyond Lotka and Vincent to develop an expression and shows
by an example how it may be used to find the ultimate stationary population without a projection. More recently,
Bourgeois-Pichat and Taleb (1970) analysed the fluctuations resulting from a sudden drop in the absolute num-
ber of births.
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these restrictive assumptions without giving up the whole flair of an analytic treatment.
One early example of studying the effect of time-changing vitality rates to the growth and
structure of populations was Coale’s idea to include uniformly shrinking fertility rates
(Coale and Zelnik 1963; see also chapter 4 in Coale 1972), later called pseudostable
populations by Feichtinger and Vogelsang (1978). For a brief introduction into the field
needed in our analysis of the pseudostable momentum, see Section 3 below.

This paper studies the behavior of the time path of the momentum M(t), which is
defined as the ratio of the ultimate population size divided by its initial size. In particular,
we derived a comprehensive qualitative characterization of the momentum of population
growth under pseudostable conditions. Our results show that M(t) is a monotonously
decreasing S-shaped function converging to zero for increasing reference times, but re-
markably to a finite value given by the ratio e0/µ in the remote past. Here e0 denotes
the life expectancy at birth and µ the mean age of child bearing in a one-sex stationary
population. This fact guarantees the existence of a time t̂ with neither a positive nor a
negative momentum (i.e., M(t̂) = 1). Moreover, we present a dynamic sensitivity analy-
sis with respect to the key parameter of pseudostability – namely, the rate k of fertility
decline.

Since the analytic approach to pseudostable populations relies on the simplification
of a fixed unique birth age, it is important to compare the theoretical results with those
obtained by the standard population projection method. Generally speaking, the fit of
the analytical pseudostable approximations to the numerical projection turned out to be
reasonably good.5

As the formal treatment of pseudostable populations provides new insights, our anal-
ysis extends existing knowledge in several ways:

(1) It allows an analytical approach to populations late in the first demographic transi-
tion, when mortality declines have stalled but fertility continues to fall. This can be
instructive to demographers of historical as well as contemporary populations.

(2) It can be instructive for historical demographers. Coale (1972), for instance, claims
that the demographic situation in the United States during the first decades of the
twentieth century resembles the pseudostable case.

(3) It can be employed for the analysis of contemporary populations. While fertility is
declining in many parts of the world, Latin America is particularly interesting for
two reasons:

5 The criterion is the difference of the pseudostable birth trajectory and the simulated one (obtained by the
component method of population projections); see Coale (1972: 121), who mentions a maximum difference of
about 6% . Our calculations confirm this robust result.
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a) Many of these countries fit the pseudostable scenario of proportional reduc-
tions in fertility extremely well, combined with relatively little variation in the
age at childbearing. We were unable to identify another set of countries where
the pseudostable assumptions apply as well as they do in Latin America.

b) The net reproduction rate has crossed the replacement level (NRR = 1) in
recent years, for which we identified the most interesting dynamics in a pseu-
dostable setting. Figure 1 shows the development of the net reproduction rate
in four selected Latin American countries for the years 1985–2020. The black
lines denote the observed fertility.6 The red lines show the fit of the fertility
decline assuming a constant decline. The titles in each of the four panels not
only name the countries but also report the estimated declines in the net repro-
duction rate per year. In the remainder of the text, we selected Colombia from
these four countries to illustrate our results. Our analytical treatment can then
be used as a guide, interpreting empirically observed results (as suggested by
Lotka (1938)). Likewise they can be used to forecast the age structure, the
population size, the birth trajectory, and the population momentum.

The paper is organized as follows. The following two sections explain the population mo-
mentum in Section 2 as well as the pseudostable framework in Section 3. After bringing
together both topics, Section 4 presents the main results on the pseudostable momentum
in the form of two propositions. Section 5 contains conclusions and ideas for possible
extensions.

Appendix A summarizes some important facts about the pseudostable populations.
Proofs of propositions are given in Appendix B, and additional material is in Appendix C.

6 We would like to point out that by “observed fertility” we refer to the data as presented in the World Popu-
lation Prospects published by the United Nations. Strictly speaking, these data are not observed rates in many
countries – including those we have selected for illustrative purposes – since the official records are not deemed
to be accurate and reliable enough (United Nations 2024). They were estimated by a model instead. Ideally, we
would have preferred to use highly reliable data as provided by the Human Mortality Database (HMD) and the
Human Fertility Database (HFD). But those countries are not covered by either database. And the countries,
which are actually covered, do not fit the pseudostable requirements.
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Figure 1: Net reproduction rate (NRR, black), exponential fit (red), and
hypothetical NRR if mortality was constant (green, mortality was
used from the year 2002, i.e., approximately the middle of the interval)
in four selected Latin American countries between 1985 and 2020
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Source: Own estimation and illustration based on data from the United Nations (2022).
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2. On the momentum of population growth

Following the seminal paper by Keyfitz (1971) (see also Keyfitz 1977), we start with
a stable age structure with growth rate r and birth rate b. Denoting life expectancy at
birth by e0, the mean age of childbearing in the stationary population by µ and the net
reproduction rate (NRR) of the initial population by R0 leads to an immediate drop in
fertility to replacement levels – that is, to an NRR of 1, in the following expression for
the momentum:

M =

(
e0
µ

)(
b

r

)
R0 − 1

R0
. (1)

The momentum expresses the ratio of the resulting ultimate total stationary popula-
tion divided by the size of the initial population before the intended change in fertility.
Note that Equation (1) also remains valid for negative population growth. Hence the ini-
tial stable growth rate r is below zero, corresponding to NRR = exp(rT ) < 1, where T
denotes the mean length of a generation. A decreasing population continues to shrink for
a while until the stationary level will be reached.

The proof of Equation (1) uses Fisher’s (2013) “reproductive value,” the average
number of future children a woman of a certain age will have during her remaining repro-
ductive period. According to standard practice, we consider a one-sex model that restricts
us to the female component of the population.

As mentioned, the concept of the population momentum remains valid for any pop-
ulation, not only for those whose age distribution is stable, as in Keyfitz’s (1971) analytic
formula. Preston and Guillot (1997) introduce an equation expressing population mo-
mentum for any age structure (see also Preston, Heuveline, and Guillot 2001: 162):

M(t) =

∫ ω

0

c(a, t)

cs(a)
w(a)da, (2)

where c(a, t) is the proportionate age distribution of the population at time t when replace-
ment-level fertility is imposed. The age distribution in the denominator of Equation (2)
is the stationary one that will eventually emerge after replacement-level fertility has been
in place for many years. The third quantity in Equation (2), w(a), is given as

w(a) =
l(a)v(a)

µ
, (3)
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where l(a) is the life table survival function, and

v(a) =
1

l(a)

∫ ω

a

l(x)m∗(x)dx (4)

denotes the reproductive value of an a year old woman, as explained above with the
replacement fertility rates m∗(x).

A characteristic feature of Coale’s approach is to assume that all births occur at a
unique age, namely µ. Starting with the time when replacement-level fertility is imposed,
each female expects exactly one birth at age µ, none below and none above.

Thus, we have

v(a) =

{
1 for a ≤ µ
0 for a > µ

. (5)

Now from Equation (2), we obtain

M(t) =
e0
µ

∫ µ

0

c(a, t)

l(a)
da. (6)

Chapter 7.7 in Preston, Heuveline, and Guillot (2001) provides a good introduction
to the momentum of population growth, a core concept of population dynamics, which
was introduced by Keyfitz more than 50 years ago (1971). Nevertheless, it has remained
an active field of research ever since because it captures “the cumulative contribution of
age composition to population growth (or decline)” Espenshade and Tannen (2015: 572).
While Keyfitz (1971) assumed an immediate change of fertility rates to replacement level,
Li and Tuljapurkar (1999, 2000), Schoen and Jonsson (2003), and Goldstein (2002) deal
with gradual changes of vitality rates to a stationary situation. Schoen (2006: Chapter 3)
gives both a continuous as well as a discrete time approach to the demographic mo-
mentum. Moreover, his monograph contains also a section on pseudostable populations
(denominated by the author as ‘metastable’ ones).

Recently, Morse (2024) illustrates the assessment by the United Nations’ World Pop-
ulation Prospects (2022) that two-thirds of the projected increase in global population
through 2050 will be driven by population momentum. Earlier, Blue and Espenshade
(2011) trace population momentum across the demographic transition. Using historical
data and population projections from 16 countries the authors draw attention to some pre-
viously ignored empirical regularities of the demographic transition in both the developed
and the developing world (see also Espenshade, Olgiati, and Levin 2011).
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3. Fundamentals of pseudostable populations

The assumptions that underly the stable population model allow a mathematical treatment
of the transient and long-term dynamics of such a population. Relaxing those assump-
tions is a step toward a more realistic perspective. In chapter 4 of his groundbreaking
book, Coale (1972) considers the case of fertility declining at a constant rate. This added
flexibility allows us to investigate the demographic consequences of the fertility decline
observed in many countries during the demographic transition in a succinct analytical
way. More specifically, the pseudostable approach answers the question of how a long-
term fertility decline at a fixed annual rate influences the age distribution as well as related
demographic indices.

Coale (1972, Chapter 4) studies a particular instance of changing fertility schedules:
Assuming constant mortality and fertility subject to a constant annual change with a fixed
age pattern, he is able to derive analytic expressions for the underlying population de-
cline in this scenario of a fertility decline (see also Coale and Zelnik 1963; Feichtinger
and Vogelsang 1978; Kim and Schoen 1996; Schoen 2006 for earlier and related work).
Remarkably, the approach pioneered by Coale and Zelnik (1963) provides a bouquet of
analytic results that are different but comparable to those in a stable framework. This
fact motivated Feichtinger and Vogelsang (1978) to denominate the Coale–Zelnik pop-
ulations as pseudostable. Next, we summarize some of the findings that are crucial for
understanding the growth and the structure of pseudostable populations.

Consider a one-sex population dynamic model in continuous time with age-specific
fertility rates

m(a, t) = m(a, 0) exp(kt) for α ≤ a ≤ β (7)

in period t at age a, where k < 0 measures the annual rate of fertility decline. Note that
fertility has a fixed age structure but with changing level at a constant rate. Then for the
time-dependent net reproduction rate R(t) =

∫ β

α
l(a)m(a, t)da holds:

R(t) = R(0) exp(kt), d logR(t)/dt = k. (8)

To simplify the analysis we choose the time t = 0 such that there prevails exact
replacement (R(0) = 1). Figure 2 illustrates the time path of an exponentially shrinking
net reproduction rate with k = −2%, (i.e., about the pace observed in the four Latin
American countries shown in Fig. 1). While the next sections show asymptotic behavior,
we can already see that a pseudostable population describes a transient phase: With an
empirically observed pace of fertility decline of about two percent annually, it would only
take about one hundred years from the currently highest observed net reproduction rate
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(2.937 in Niger) to attain the lowest (0.358 in Hongkong, see United Nations (2022) for
both NRR estimates).7

Figure 2: Net reproduction rate R(t), assuming a constant rate of fertility
decline of two percent. Time axis t = 0 is fixed when R(t) = 1
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Our first goal is to find out the birth trajectory. Inserting assumption 7 in the renewal
equation for births B(t), we get

B(t) =

∫ β

α

B(t− a)l(a)m(a, t)da = R(0) exp(kt)

∫ β

α

B(t− a)l(a)m(a, 0)da. (9)

7 log(0.358/2.937)/(−0.02) = 105.2305
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Assuming a unique age at which females give birth, denoted as µ(t), and applying
the mean value theorem of integral calculus, yields

B(t) = B(t− µ(t))R(t). (10)

To solve Equation (10), Coale (1972: 119) assumes that µ(t) is a fixed number µ,
(i.e., the mean age of childbearing in the stationary population).

Then Equation (10) delivers a linear difference equation for logB(t).8 Solving it by
a quadratic approach leads to the following birth sequence:

B(t) = B(0) exp

[
kt

2
+

kt2

2µ

]
. (11)

Note the following:

• With known k, t, and µ, B(0) uniquely determines the birth trajectory.
• The geometric growth for stable populations extends to a quadratic exponential

function in the pseudostable case.
• B(t) is a symmetric bell-shaped curve reaching its maximum at t = −µ/2. This

might seem counterintuitive for two reasons: (1) We observe an increase in births
despite a continuously declining level of fertility (until t = −µ/2). (2) The num-
ber of births declines despite NRR > 1 for −µ/2 < t < 0. It can be understood
by seeing the number of births as the scalar product of the (vector of) age-specific
fertility rates and the (vector of) corresponding number of women at fertile ages
where the former is continually falling but the latter still increasing.

Figure 3 illustrates the dependence of birth trajectories on k – that is, the rate of
fertility decline – and the mean age at childbearing µ. The upper panel confirms, most
visibly for the relatively fast annual fertility decline of 5% (k = −0.05) in bright blue,
that we have a bell-shaped curve. The larger the absolute value |k| is, the steeper the
B(t); small |k| lead to ‘flat’ trajectories being less concentrated around −µ/2; the peak
in births is reached exactly at t = −µ/2. Due to the quadratic shape the same number of
births are observed at t = −µ, as in t = 0. The lower panel shows how the timing of the
peak in births depends on µ for a given pace of fertility decline (1% annually), but not the
level or shape. Thus, k determines the shape and scale of the birth trajectory, whereas µ
is the location parameter.

8 See Appendix A for details.
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Figure 3: Analytical pseudostable birth trajectories
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It is astounding that the strong assumptions of a constant value of µ and a single age
at birth generated a birth stream, (i.e., the number of births per unit of time) is very close
to the birth stream in the full renewal equation. While still assuming a constant age at
childbearing, the simulation depicted by the red line in Figure 4 takes the reproductive
interval between 12 and 55 into account.

Figure 4: Births B(t): A comparison of the analytical approximation (blue)
with an empirical simulation (red)
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We assessed the accuracy of the approximation in Equation (11) by simulation:
We used the fertility and mortality age-structure of women in Colombia from 1985 on-
ward. The time axis was centered when NRR = 1. Thus, the year 2008 corresponds to
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t = 0. The simulation started with a hypothetical NRR of 8 and a constant annual rate
of decline (k) of 1.91%, while keeping the fertility age structure constant. The initial
population age structure was the stable equivalent of the 1985 female Colombian pop-
ulation. The mean age at childbearing was 27 years. This is close to the average from
our observation window of interest (1985–2008) of 26.9 years. Although we only fixed
the level of the number of births to coincide with the actual observed number of female
births in the year 2008 (t = 0), the general shapes, level and modal ages in both curves
match remarkably well. These findings also mirror Coale’s (1972: 121–122) earlier re-
sults. The deviations at the beginning can be attributed to the age structure: While the
analytical trajectory assumes a pseudostable age structure, we used the stable equivalent
age structure of the underlying fertility and mortality schedule (i.e., the right eigenvector
to the dominant eigenvalue of the projection matrix).

In the remainder of this short introduction to pseudostable populations, we derive
its time-dependent age structure c(a, t) that results from the quadratic exponential birth
sequence (11).

c(a, t) =
N(a, t)

N(t)
=

B(t− a)l(a)∫ ω

0
B(t− x)l(x)dx

=
g(a, t)l(a)∫ ω

0
g(x, t)l(x)dx

, (12)

where N(a, t) is the number of a years old females at time t, and

g(a, t) = exp

[
−ak

2
+

a2k

2µ
− kta

µ

]
. (13)

When fertility declines, there is a transitory period of low dependency. This occurs
when the largest cohorts born during the transition are of prime working ages and there are
few children and simultaneously few elderly. Since the classical stable population theory
is not capable of carrying out such an analysis, the authors resorted to the pseudostable
approach, which showed how the survival schedule, the pace of fertility decline, and
the generation length determine the timing, duration, and magnitude of the demographic
support ratio. Note that this delivers a valuable contribution to the lasting discussion
around the demographic dividend.
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4. The pseudostable momentum

Inserting the pseudostable age structure (12) for the proportionate age distribution c(a, t),
we obtain from (6)

M(t) =
e0
µ

∫ µ

0
g(a, t)da∫ ω

0
g(a, t)l(a)da

. (14)

This section looks at the behavior of the momentum over the entire time interval
from minus infinity to plus infinity. We start with an intuitive approach that delivers
qualitative insights before proceeding in a stepwise manner to obtain quantitative results.

In the remote past, the high NRR led to a very young age distribution. Since there
were scacely any older people living at that time, the ratio of integrals in Equation (14)
goes to 1 for t versus minus infinity. On the other hand, the age composition was increas-
ingly concentrated to higher ages for very large periods t. Thus, the proportion of the
pseudostable population in the age group from 0 to µ converged to zero.

This asymptotic behavior suggests a monotonous decrease of the momentum from
e0/µ to 0. In the following we assume that e0/µ > 1 as life expectancy at birth is
usually larger than the mean age at childbearing. Nevertheless some exceptions have
been observed previously, for instance due to high infant mortality.9

Thus, interestingly enough there should be a time t̂ such that M(t̂) = 1. Intuitively,
this is a remarkable feature of pseudostable populations. In the remote past, there is a
huge positive momentum. For replacement conditions imposed in the remote past, the
pseudostable population may increase substantially, not to infinity as one could presume
at the first glance, but to a level of 2–3 times the initial population. In the next step,
the positive momentum gradually declines until it reaches a time, denoted above as t̂,
where there is neither a positive nor a negative further growth of the population. Since
NRR(t) > 1 for t < 0, the momentum at time 0 is still positive – that is, M(0) > 1
(note that NRR(0) = 1).

From t̂ onwards the momentum is negative, which means that an already shrinking
population continues to shrink for a while until stationarity on a level smaller than one is
eventually reached. Note the asymmetry in the behavior of M(t) for very large positive
t as opposed to very large negative times. While in the first case the (negative) impact
of declining fertility is restricted to 100%, the maximal (positive) momentum amounts to
200% to 300% in the latter.

9 We checked the 2019 Revision of the World Population Prospects of the United Nations. Those were the
exceptions across all countries of the world during the years 1950 through 2020 (in alphabetical order):
Afghanistan 1950–1955; Cambodia 1975–1980; Mali 1950–1955, 1955–1960; Rwanda 1990–1995; Yemen
1950–1955, 1955–1960.
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Clearly, such considerations of plausibility do not replace a mathematical proof.
From Equation (14) we get

M(t) =
e0
µ

N (t)

D(t)
, (15)

where the numerator N (t) and the denominator D(t) of (15) are given by

N (t) =

∫ µ

0

g(a, t)da, D(t) =

∫ ω

0

g(a, t)l(a)da (16)

with

g(a, t) = exp

[
k

(
−τa+

a2

2µ

)]
(17)

and τ = 1
2 + t

µ .
The function g(a, t) plays an important role in the dynamics of pseudostable popu-

lations. As shown in Coale (1972: 120) and in Feichtinger and Vogelsang (1978: Sec-
tion 6.1), it has a demographic interpretation – namely g(a, t) is the number of people
at age a at time point t, standardized by the number of births in the given year B(t):
g(a, t) = N(a, t)/B(t).

With the timescale anchored (t = 0) when NRR = 1, Figure 5 illustrates the time
path of the population momentum in pseudostable populations for four different values
of the rate of fertility decline k. They range from an expedited reduction in fertility
(−5% p.a.) to an extremely slow pace (−0.1% p.a.): For instance, it would only take
7.9 years to observe a decline in the NRR from 3 to 2 in the fast scenario but more than
400 in the slow scenario. We would like to point out two interesting characteristics: (1)
Despite this large variation in the pace of fertility decline, the ‘tipping point’ for M(t)
is rather independent for realistic values of k. They all converge approximately at the
same time-point. And (2) in contrast to the canonical stable model, a NRR = 1 is not
equivalent to M = 1 in the pseudostable case. Expressed differently, there is a time
interval from t = 0 to t̃ where the observed NRR would induce a population decline in
the stable model, whereas it would trigger further population increase in the pseudostable
model.
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Figure 5: Time paths of the population momentum M(t) in pseudostable
populations with varying levels of fertility decline k
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Figure 6 shows the long-run perspective of the population momentum. We simulated
this long-term trajectory with the age-specific survival of Colombian women in 1985 and
their fertility age structure. The mean age at childbearing that year was 27.79 years, while
life expectancy at birth was 71.12 years. As one probably expects, the momentum M(t)
tends to zero with ever-declining fertility. To our initial surprise, however, momentum
in the remote past does not increase infinitely with continously higher fertility. Instead,
it bends over to an asymptotic limit of e0/µ (see also Proposition 1). With a mean age
at childbearing of 27.79 years and life expectancy at birth of 71.12, the theoretical upper
value of M(t → −∞) = e0/µ = 71.12/27.79 = 2.56. Our empirical estimate (with
k = −0.5%) led to a M(t → −∞) = 2.55.
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Figure 6: Population momentum M(t) – long-term perspective
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Theoretical asymptotic momentum

Next, we are interested in how the pseudostable momentum depends on time t. By
differentiating Equation (15) with respect to t and applying the quotient rule, we obtain

M ′(t) = M(t)

(
N ′(t)

N (t)
− D′(t)

D(t)

)
. (18)

Direct calculations lead to

N ′(t) =

∫ µ

0

g(a, t)

(
−ka

µ

)
da = −k

µ

∫ µ

0

ag(a, t)da (19)

and

D′(t) =

∫ ω

0

g(a, t)

(
−ka

µ

)
l(a)da = −k

µ

∫ ω

0

ag(a, t)l(a)da . (20)
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Therefore Equation (18) can be rewritten as

M ′(t) =

(
k

µ

)
M(t)

(∫ ω

0
ag(a, t)l(a)da∫ ω

0
g(a, t)l(a)da

−
∫ µ

0
ag(a, t)da∫ µ

0
g(a, t)da

)

=

(
k

µ

)
M(t)

(
A(t)−A0

µ(t)
)
, (21)

with

A(t) =

∫ ω

0
ag(a, t)l(a)da∫ ω

0
g(a, t)l(a)da

and A0
µ(t) =

∫ µ

0
ag(a, t)da∫ µ

0
g(a, t)da

, (22)

where A(t) is the mean age of the total pseudostable population under a general survival
function and A0

µ(t) denotes the mean age of those females below age µ under a rectangu-
lar survival function.

We conjecture that A(t) > A0
µ(t) and together with k < 0, we conclude that

M ′(t) < 0. This is also supported by numerical simulations.
The following proposition collects the structural properties of the momentum for

pseudostable populations. It constitutes the main results of the paper.

Proposition 1: The pseudostable momentum M(t) develops as follows:
(a) limt→−∞ M(t) = e0/µ,
(b) limt→+∞ M(t) = 0,
(c) dM(t)/dt < 0,
(d) there exists a unique time t̂ such that M(t̂) = 1, and
(e) there is a unique point of inflection t̃ characterized by M ′′(t̃) = 0.10

Following Equation (6) and by taking
∫ ω

0
c(t, a)da = 1 into consideration, rectangu-

lar mortality and µ < ω = e0 we conclude that M(t) < e0/µ. An intuitive explanation of
the asymptotic result (a) from Proposition 1 by using the renewal theorem is the follow-
ing11: One newborn girl B = 1 leads to a birth rate 1/µ. Thus, the ultimate population
equals Be0/µ = e0/µ.

Figure 7 shows the pseudostable population momentum M(t) in Panel (A) and its
first and second derivatives in panels (B) and (C), respectively. Plots are based on analytic
expressions. The following assumptions were made: mean age at childbearing in a sta-

10 The uniqueness is only supported by numerical simulations. The second derivative M ′′ was derived (see
Appendix C, (56)) but an analytical solution could not be found. Aburto et al. (2019, 2022) might be good
starting points for further research to prove the uniqueness analytically.
11 We are grateful to Joshua R. Goldstein, UC Berkeley, for suggesting this interpretation.
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tionary population µ = 30; proportional fertility reduction per unit of time k = −0.025;
Gompertz-mortality with parameters α = 10−5 and β = 0.11 resulting in life expectancy
at birth e0=79.33.

Figure 7: Momentum and its derivatives depending on time
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Remark: For a rectangular survival function l(a),

l(a) =

{
1 if a < ω
0 if ω ≤ a

, (23)

the mean age of the total pseudostable population reduces to

A0(t) =

∫ ω

0
ag(a, t)da∫ ω

0
g(a, t)da

. (24)

Clearly it holds that A0(t) > A0
µ(t), which proves point (c) of Proposition 1 for

rectangular survival functions.12

Next, we will sketch the significance of the results from Proposition 1. Point (a)
describes the remarkable fact that the asymptotic behavior of the pseudostable momen-

12 For an analytical proof of Proposition 1 in case of rectangular survival functions, see Appendix B.
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tum M(t) in the remote past does not depend on the shrinking rate k of reproduction.
Moreover, the limit is given by the quotient of the upper age limit ω and the mean age of
birth µ. According to (c) and (b) M(t) decreases montonously before converging finally
to zero.

While the momentum could initially be presumed as infinitely large in the very re-
mote past, this is not true. In our model, however, the momentum decreases gradually
from its maximal value e0/µ to zero. Point (d) says that there is a time t̂ in between
where there no momentum exists. For t < t̂ there is a ‘positive’ momentum (or, more
formally, the momentum exceeds one), whereas the momentum is ‘negative’ for t > t̂
(i.e., the population continues to shrink for a while), if the net reproduction rate imme-
diately increases to replacement level. Since the net reproduction rate NRR(0) equals
1 and was higher in the past, there are enough potential mothers to imply a positive mo-
mentum for t = 0 – that is, M(0) > 1.

For the proof of Proposition 1 we complete the expression in the exponential func-
tion (13) of the exponent in g(a, t) to a square by adding (µ/2)τ2. To establish the first
two points (a) and (b) the rule of de L’Hôspital is applied. The proof of (c) uses the gen-
eralized mean value theorem of differential calculus. For details also of the additional
points raised in the proposition see Appendix B. Together with the asymptotic behavior
this establishes the existence of at least one point of inflection. To ascertain it, we set
M ′′(t) = 0.

Next we vary the core parameter of the pseudostable model, the rate of fertility de-
cline k. The results are summarized in the following:

Proposition 2: Consider the momentum not only as a time function but also depending
on the rate k of declining fertility – that is, M(t; k).

For decreasing absolute values of the parameter k, the momentum M(t; k) becomes
flatter, while larger declining rates lead to a steeper momentum.

In the limit one obtains a horizontal straight line and a step function, respectively.
For k → −∞ it holds that

M(t; k) =

{
e0/µ for t < µ/2

0 for t > µ/2
. (25)

While for k → 0 we have

M(t; k) = 1 for all t. (26)
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The neutral time t̂ is a function of k (t̂(k)), which increases with k (dt̂(k)/dk > 0 (note
that k < 0)). Moreover,

lim
k→0

t̂(k) = +∞, lim
k→−∞

t̂(k) = µ/2 . (27)

The proof is sketched in Appendix B.
Figure 8 depicts the momentum M(t) for extremely high values of fertility decline

k. The points of intersection with M(t) = 1 lead to the neutral times t̂(k). This figure
also illustrates how the momentum gets steeper for k → −∞ and that t̂(k) → µ/2. From
simulations we derive that the same asymptotic behavior is true for the point of inflection
t̃ = t̃(k).

Figure 8: The momentum of an extremely high decline of fertility
(i.e., extremely low values of k)
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Table 1 shows estimated values for the point of inflection t̃ as well as t̂ – that is,
the time point when momentum M(t) = 1 – for selected levels of fertility reduction
k. The results are based on the assumption of a mean age at childbearing µ = 30 in
stationary populations and mortality following a Gompertz distribution with parameters
α = 0.00001 and β = 0.11, resulting in life expectancy at birth e0 = 79.3 years. Age
109 was used as the upper age limit ω. This is the age at which there is at most one in
a million survivors with the given parameters of the Gompertz distribution. Note that
for k very near to zero (larger than −0.0020) the dependence both of t̂ and t̃ on k is not
monotonous, which seems to be due to numerical artifacts.

Table 1: Neutral times t̂ and time points of inflection t̃ of the momentum
depending on the fertility decline as measured by parameter k

k t̂ t̃

–0.0001 18.060 22.076
–0.0002 20.400 21.804
–0.0005 21.790 22.018
–0.0010 22.240 22.439
–0.0020 22.440 22.889
–0.0050 22.480 22.503
–0.0100 22.360 22.378
–0.0200 22.070 22.044
–0.0500 21.230 21.252
–0.1000 20.150 20.158
–0.2000 18.850 18.872

Note: Surprisingly, there is only a rather small differences between the neutral time t̂ and the inflection time t̃.

The time from t = 0 to t̂ is interesting for several reasons. First, for 0 < t ≤ t̂
fertility is below the replacement level. Nevertheless we observe positive momentum –
that is counterintuitive to the standard case of population momentum. Second, M(t̂) = 1
implies that the population size observed at t̂ is equivalent to the population size obtained
with an immediate switch to replacement level fertility at t̂. Third, the age structure of
the pseudostable population is not equivalent to the stationary age structure as shown in
Figure 9.

The stationary age structure features more children and more people at higher ages,
whereas the pseudostable population contains more persons at working ages. Expressed
differently, all standard dependency ratios (young, old, total) are more favorable in the
pseudostable population at t̂ than in the stationary case.
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Figure 9: Population pyramides to compare the age structure when M(t) = 1
with the stationary age structure
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5. Conclusions

Although stable populations are at the core of formal demography, they do not – to the
best of our knowledge – occur in reality, where age-specific vitality rates change over
time. Coale (1972) extends the stable framework by assuming uniformly declining fer-
tility rates without giving up the flair of analytic tractability.13 In the current paper we
studied one special aspect of this type of population, later denoted as pseudostable ones
(see Feichtinger and Vogelsang 1978), namely their demographic momentum.

We derived a qualitative characterization of the time path of the momentum M(t)
of population growth and decline under pseudostable conditions. It turned out that M(t)
is a monotonously decreasing S-shaped function that converges to zero for an increasing
13 Changing fertility but keeping mortality constant also does not correspond to reality for population develop-
ment but can be seen as a first step.
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number of times, but remarkably to a finite value given by the ratio e0/µ in the remote
past. This guarantees the existence of a time t̂ with a neutral momentum (i.e., M(t̂) = 1).
To prove this interesting behavior of the pseudostable momentum, we had to assume not
only a fixed unique birth age but also a rectangular mortality schedule.

Moreover, we provided a dynamic sensitivity analysis with respect to the rate k
of fertility decline. For decreasing absolute values of the parameter k, the momentum
becomes flatter, while larger declining rates lead to a steeper momentum. In the limit
this results in a horizontal straight line and a step function jumping from e0/µ to zero for
t = µ/2, respectively.

Two assumptions were crucial to derive the analytical results we obtained in our pa-
per, namely exponentially changing concentrated fertility and rectangular survival. With-
out these simultaneous assumptions no analytical insights are possible. Future research
might be able to relax those assumptions. Admittedly, we were not able to do that.

What we did, however, was show by numerical simulation that virtually all our re-
sults obtained in this paper remain qualitatively valid for actual observed mortality.

Reflecting the history of the natality and the mortality of a population, its age com-
position can be seen as its memory. The reason for the demographic momentum is an
inertia of age structures containing a relatively large number of potential parents due to
past high fertility. Although a miraculous immediate reduction of fertility to replace-
ment level is unrealistic, a gradual decline of fertility in fast growing populations seems
inevitable. Since any delay in fertility decline to a stationary level leads to an increase
of the momentum, it makes sense to think about the timing and the quantum of the re-
duction in reproduction. More specifically, there is an intertemporal trade-off between
costly family planning measures and the size of the demographic momentum at the end
of the planning period. In Feichtinger and Wrzaczek (2024) a distributed parameter con-
trol framework is used to study this problem. An appropriate extension of Pontryagin’s
maximum principle allows for deriving interesting insights into the qualitative structure
of the optimal path of fertility control and the resulting salvage momentum. In particu-
lar, this approach can be applied in a symmetric way to determine efficient pro-natalistic
measures for shrinking populations, a situation that is currently prevailing in several de-
veloped countries. The scenario of an instantaneous surge in fertility to replacement level
would lead analogously to a population that continuously declines for several decades as
in several developed countries such as South Korea.
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française de statistique de Paris 86: 16–39.

http://www.demographic-research.org 471

https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2024/Jul/undesa_pd_2024_wpp2024_methodology-report.pdf
https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2024/Jul/undesa_pd_2024_wpp2024_methodology-report.pdf
https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2024/Jul/undesa_pd_2024_wpp2024_methodology-report.pdf
http://www.demographic-research.org


Feichtinger, Rau & Novák: On the momentum of pseudostable populations

Appendix A: Addendum to pseudostable populations

This Appendix section provides details on pseudostable populations. For more detailed
information on these interesting populations see Coale (1972: Chapter 4) and Feichtinger
and Vogelsang (1978).

We start with the derivation of the potentially surprising fact of a ‘birth mountain’
resulting from a permanent decline of fertility at a constant rate k.

Let us start with Equation (10). For a constant µ(t) = µ it may be written as

B(t) = R(0) exp(kt)B(t− µ). (28)

Setting Y (t) = logB(t) and reiterating the assumption R(0) = 1, Equation (28)
may be written as

Y (t)− Y (t− µ) = kt. (29)

As mentioned in Section 3, this is a linear difference equation that may be solved by
assuming Y (t) = b1t+ b2t

2. Substituting this quadratic polynomial in Equation (29) and
solving for the coefficients b1 and b2 yields b1 = k/2, b2 = k/(2µ) and hence the birth
path with the quadratic exponential previously described in Equation (11).

Next, the mean age of the total population N(t) is given by

A(t) =

∫ ω

0

ac(a, t)da. (30)

Combined with Equations (12) and (13) this results in a permanent increase in the
mean age of pseudostable populations, since it holds that

dA(t)

dt
= −kσ2

µ
(31)

is greater than zero, where

σ2(t) =

∫ ω

0

(a−A(t))2c(a, t)da (32)

is the variance of the age structure. Note that Equation (31) results from the linear ap-
proximation of the exponential function (13) (see Feichtinger and Vogelsang 1978: 39)
for the stable pendant (compare also Keyfitz 1977: 88–89).
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Note that the following limits are given by

lim
t→+∞

A(t) = ω, lim
t→−∞

A(t) = 0.

An efficient tool created by Coale (1972) to analyze populations with a constantly
changing net reproduction rate (i.e., pseudostable populations) is to compare them at an
arbitrary time t with the stable population resulting from the fertility schedule prevailing
in t. The growth rate of the stable equivalent is given as a unique real solution to the
characteristic equation

∫ ω

0

exp(−rs(t))l(a)m(a, t)da = 1,

namely

rs(t) =
logR(t)

µ
=

kt

µ
. (33)

Appendix B: Proofs

Under the restriction of a rectangular survival function l(a) (see Equation (23)) we pro-
vide a formal proof.

Proof of Proposition 1: By completing the expression in the exp-function (13) to a
square the pseudostable momentum given in Equation (14) is proportional to

∫ µ

0
g(a, t)da∫ ω

0
g(a, t)da

=
exp(kµτ2/2)

∫ µ

0
exp

[
k
(
−τa+ a2

2µ

)]
da

exp(kµτ2/2)
∫ ω

0
exp

[
k
(
−τa+ a2

2µ

)]
da

=

∫ µ

0
exp

[
k(a−µτ)2

2µ

]
da∫ ω

0
exp

[
k(a−µτ)2

2µ

]
da

. (34)
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Using this in Equation (15) yields a quotient of two well-known integrals of the form∫
exp(−z2)dz. As

∫
exp

[
k(a− µτ)2

2µ

]
da =

∫
exp

−(√−k

2µ
(a− µτ)

)2
 da (35)

we therefore transform a to z by

z =

√(
−k

2µ

)
(a− τµ) (36)

and obtain a simpler integrand, but more complicated integration limits. This transforma-
tion also leads to

da = dz

√
2µ

−k
. (37)

Thus, the integral in Equation (1) is equivalent to

∫
exp

−(√−k

2µ
(a− µτ)

)2
 da =

√
2µ

−k

∫
exp

[
−z2

]
dz. (38)

The integration limits have to be changed in the following way:

a = 0 ⇒ z = −τ

√
−kµ

2
, a = µ ⇒ z = (1− τ)

√
−kµ

2
,

a = ω ⇒ z =

(
ω

µ
− τ

)√
−kµ

2
. (39)

Therefore, we next use the momentum M(t) transformed as indicated, ignoring the factor
ω/µ, and denote it as

J(x;u, v) =

∫ x+u

x
exp[−z2]dz∫ x+v

x
exp[−z2]dz

, 0 < u < v (40)
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with

x = −τ

√
−kµ

2
, u =

√
−kµ

2
, v =

ω

µ

√
−kµ

2
. (41)

Now we aim to show that

∂J(x;u, v)

∂x
> 0. (42)

Note that the sign of the derivative in Equation (42) is opposite to that in point (c) of
Proposition 1. This is because t (τ) and z are related by Equation (36).

To establish Equation (42) we consider the following function

F (x, y) = − log

[
exp(x2)

∫ x+y

x

exp(−z2)dz
]
, y > 0 . (43)

Direct calculation shows the validity of

∂ log J(x;u, v)

∂x
= Fx(x, v)− Fx(x,u). (44)

This follows from

J(x,u, v) =
exp(x2)

∫ x+u

x
exp[−z2]dz

exp(x2)
∫ x+v

x
exp[−z2]dz

, ⇒ log J(x,u, v) = F (x,u)−F (x, v) (45)

where

Fx(x, y) = −2x+
exp(−x2)− exp(−(x+ y)2)∫ x+y

x
exp(−z2)dz

. (46)

Now we prove two lemmata for the function (43).

Lemma A.1: There exists a δ ∈ (0, y) such that

Fx(x, y) = 2δ. (47)
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Proof

exp(−(x+ y)2)− exp(−x2)∫ x+y

x
exp(−z2)dz

=
exp(−(x+ y)2)− exp(−x2)∫ x+y

0
exp(−z2)dz −

∫ x

0
exp(−z2)dz

. (48)

Defining the function f(x) = exp(−x2) and g(x) =
∫ x

0
exp(−z2)dz then according

to the generalized mean value theorem of calculus14 there exists a δ ∈ (0, y) such that

exp(−(x+ y)2)− exp(−x2)∫ x+y

0
exp(−z2)dz −

∫ x

0
exp(−z2)dz

=
−2(x+ δ) exp[(−x+ δ)2]

exp[−(x+ δ)2]
= −2(x+ δ) (50)

leading to Fx(x, y) = −2x+ 2(x+ δ) = 2δ.

Lemma A.2: For 0 < u < v it holds that

Fx(x,u) < Fx(x, v), ∀x ∈ IR (51)

which means that Fx(x, y) is monotonically increasing in y for fixed x.

Proof

Fxy =
2(x+ y) exp[−(x+ y)2]∫ x+y

x
exp[−z2]dz

−
(
exp[−x2]− exp[−(x+ y)2]

)
exp[−(x+ y)2](∫ x+y

x
exp[−z2]dz

)2 (52)

Simplifying and applying the above result leads to

Fxy =
exp[−(x+ y)2]∫ x+y

x
exp[−z2]dz

[2(x+ y)− (Fx + 2x)] =
2(y − δ) exp[−(x+ y)2]∫ x+y

x
exp[−z2]dz

> 0 (53)

Equations (51) and (44) deliver the desired result (42). Hence, this establishes the mono-
tonic decrease of M(t) asserted in (c) of Proposition 1.

14 For sufficiently smooth functions f(x) and g(x) there exists a value x0 ∈ (α,β) such that

f(β)− f(α)

g(β)− g(α)
=

f ′(x0)

g′(x0)
. (49)
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To prove the asymptotic behavior declared in points (a) and (b) the rule of de L’Hôspital
can be applied.

Remark: Remember that two approximations, namely Equations (10) with µ(t) = µ
and (23), led us to the nice structural properties of the pseudostable momentum and the
related times. Numerical simulations are required to establish the validity of the results
from Proposition 1 in a more general setting, that is, for realistic (non-rectangular) mor-
tality schedules.

Proof of Proposition 2

To sketch the proof of Proposition 2 we rewrite M(t) as

J(p, p(x+ c)) =

∫ p(x+a)

px
exp(−z2)dz∫ p(x+b)

px
exp(−z2)dz

(54)

with p = −k/2µ, and c = a or b with a < b. Note that x = −(µ/2 + t).
Now, let p → ∞. Then we have to distinguish between the following four cases:

(a) 0 < px < p(x+ c)
(b) px < p(x+ c) < 0
(c) px < p(x+ a) < 0 < p(x+ b)
(d) px < 0 < p(x+ a) < p(x+ b).

The first two cases result in a limes of ‘0/0’ and can be solved by using the rule of
de L’Hôspital appropriately.

The remaining two cases use the well-known fact that

∫ +∞

−∞
exp(−z2)dz =

√
π. (55)

Remarkably, for p → ∞ Equation (18) has a jump for x = −µ, which means that
the momentum M(t) jumps from ω/µ to 0 at the time t = µ/2.
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Appendix C: Additional material

Differentiating relation Equation (18) with respect to time and taking into consideration
the derivatives of the mean ages

A′(t) = −kσ2(t)

µ
, A′

µ(t) = −
kσ2

µ(t)

µ

with the pertinent variances yields

M ′′(t) =
k

µ

{
M ′(t)[A(t)−Aµ(t)]−

k

µ
M(t)[σ2(t)− σ2

µ(t)]

}
. (56)

Setting Equation (56) equal to zero results in the equation

M ′(t)

M(t)
=

k

µ

[σ2(t)− σ2
µ(t)]

[A(t)−Aµ(t)]
(57)

to determine the time t̃ where M ′′(t̃) = 0, or when the point of inflection occurs.
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