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Abstract

BACKGROUND
Analysing mortality is relevant for decision-making. Life tables have traditionally been
based on age and sex, assuming homogeneous mortality rates within these groups. This
omits other factors that could affect mortality risks. Advances in information technology
and improved access to official microdata now enable the construction of life tables that
incorporate additional variables, offering a more detailed analysis.

OBJECTIVE
This paper aims to expand the classical approach of using age and sex by integrating
additional risk factors related to the area of residence. Specifically, the factors of climate,
habitat size, and income are considered, using detailed georeferenced population data at
the census level. Additionally, we aim to estimate future central death rates using various
forecasting models.

METHODS
Utilising almost 2 billion microdata events from the Spanish population between 2010
and 2019, we begin by estimating new life tables that incorporate climate, habitat size,
and income as risk factors. Then, after addressing random variations, erratic peaks, and
the unexplained observed decline in mortality at extreme older ages, we use a triad of
classical longevity models to project future mortality trends. All the generated data are
offered in a public repository.
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CONTRIBUTION
The database introduced in this paper can be used by social planners, demographers, and
insurers, as well as being employed to validate existing findings and explore new research
questions, particularly within the demographic and actuarial-economic fields.

1. Introduction

In the 21st century, developed nations are facing longevity challenges, characterised by
higher life expectancy and ageing populations. This yields a complex set of consequences
for wellbeing systems, with ramifications for the insurance industry and government
welfare programmes, including social support services, healthcare infrastructure, and
public pension plans (De Waegenaere, Melenberg, and Stevens 2010). Within this
context, demographic analyses and population projections emerge as indispensable tools
for understanding and reducing the uncertainties of future societal demands. As changes
in population size and composition give rise to social, economic, environmental, and
political challenges (George et al. 2001), failure to adequately anticipate the structure and
magnitude of future population cohorts and their needs may cause added stress on public
budgets and available infrastructure as a result of a deficit of resources. Demographic
forecasting and projection facilitate the decision-making processes of public and private
agents, helping them plan for and adjust to situations such as future medical needs and
costs (Miller 2001), as well as prevent rural depopulation and its consequences (ESPON
2017).

To accurately project and forecast longevity and population cohorts across an entire
territory and its sub-areas, georeferenced stocks of population must be effectively
combined with geo-detailed predictions of death and birth rates and of domestic and
foreign migration flows that take into account the particular trends and idiosyncrasies of
the different sub-populations. In this study we focus on Spain and concentrate on
mortality by estimating (2010–2019) and forecasting (2020–2050) central mortality rates
and probabilities of death by age and sex, while also considering other area-related,
contextual factors (measured using climate, income, and habitat size variables) that
impact on mortality. This paper details the data, methods, and procedures followed to
attain the estimates and forecasts and describes the database (available at
https://data.mendeley.com/datasets/jbtwjbgx5f/3) with the obtained values. These data
may be incorporated, among other processes, in the calculus of insurance premiums and
annuities, to obtain georeferenced projections and forecasts of population, or for
assessing the COVID-19 impact on mortality in Spain by age group and geographical
area.

https://data.mendeley.com/datasets/jbtwjbgx5f/3
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Central mortality rates, 𝑚𝑥, and probabilities of death, 𝑞𝑥, are the building blocks
for constructing life tables. From any of these variables, other biometric variables are
derived based on their interrelationships, among them the widely used life expectancy
statistics. Traditionally, life tables have been constructed by age and sex, given the
significance of these two variables in mortality patterns. This approach assumes
homogeneity in mortality rates within the same age–sex group, overlooking other
important variables that could impact on mortality risks. The evolution of information
technologies and the improvement in the access to official microdata opens up new
opportunities to construct and project new life tables based on additional variables of
interest, such as income level, climatic conditions, or size of habitat.

Income levels and wealth inequalities have been shown to affect the health and
mortality of populations, impacting on their death risks (see, e.g., Babones 2008;
Bosworth, Burtless, and Zhang 2016). Air temperature and precipitation have also been
linked to death risks, with both cold and heat waves modifying average probabilities of
death. Both heat-related mortality in specific cities (Basu and Samet 2002) and a
relationship between hot nights and mortality in the south of Europe (Royé et al. 2021)
have been reported, while winter has been identified as a particularly risky season for
older people (Pavía and Lledó 2022). Size of habitat has also been linked to mortality:
Living conditions and access to health and care services are different for populations
living in rural areas, with lower habitat sizes, compared to larger cities, and this affects
death rates and mortality ratios (Elizalde and Díaz 2016).

It is widely recognised that health and mortality are closely linked to many other
socioeconomic variables and lifestyles, not just those mentioned above. While we
understand that a vast array of variables can influence these phenomena, obtaining the
necessary data can sometimes be challenging. Consequently, in this study we only focus
on income, climate, and habitat size, relying on detailed georeferenced population
statistics at the census section level and the possibility offered by current statistical
systems and tools to couple these risk factors with geographical units. In future research
we aim to incorporate additional data to explore the relationship between mortality and
other social and economic factors. Hence, this study opens up new opportunities for
extensive research in the demographic and actuarial–economic fields.

From a methodological perspective, we first construct new life tables, segmented by
age, gender, and the three factors mentioned above (income level, climate, and habitat
size) for the Spanish population from 2010 to 2019. We choose the highest level of
territorial disaggregation available in Spain, the census section, and adapt the estimators
developed in Pavía and Lledó (2022). In total, we obtain 32,400 crude/raw estimates of
central mortality rates, covering the age range 0 to (around) 107, after processing around
2 billion (2,000 million) microdata events. We then project/forecast central death rates
using various forecasting models (Lee and Carter 1992; Renshaw and Haberman 2006;
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Plat 2009). Before projecting the raw rates, we smooth them to mitigate issues with
outliers and random fluctuations and also use a model to correct the estimated trend for
older ages, since the latter is more affected by raw data quality issues and typically
exhibits greater variability in estimates due to the smaller size of the surviving cohorts.
We leverage the model to extend estimates up to the age of 120, yielding a file with a
total of 36,300 final estimates of central death rates. The second file contains, in total,
337,590 projected/forecasted death rates from 2020 to 2050 classified by age, gender,
and the three abovementioned risk factors and forecasting model.

The rest of the paper is structured as follows. Section 2 details the data and
methodological procedures used to calculate the life tables and their projections, taking
into account not only the traditional variables of age and sex but also income level,
climatological conditions, and habitat size of the area of residence. This is achieved using
spatial tools and geolocation to segment the Spanish population. Section 3 provides a
summary of the two files, describing all the relevant statistics and outcomes obtained in
this study. Section 4 presents and explains the results of various validation checks
performed on the processed data. The final section briefly explores potential applications
of the data and explains some of the limitations of the study. All results, including
estimates and forecasts, are publicly available, stored in a non-commercial repository, at
https://data.mendeley.com/datasets/jbtwjbgx5f/3.

2. Data and methods

The IT revolution offers an unprecedented opportunity to collect, store, and transmit
detailed data, particularly in the demographic and actuarial fields. Data, however, are not
enough. Raw data need to be processed to gain meaningful insights, extract valuable
knowledge, and assist decision-making. Estimating and projecting mortality rates over
time requires processing and transforming microdata into summary statistics that capture
risk exposure times and specific events, such as deaths, across different levels of risk
factors. This involves several steps, including data cleaning, categorisation, and statistical
analysis, to ensure accurate and reliable projections. Figure 1 illustrates the full process
schematically.

https://data.mendeley.com/datasets/jbtwjbgx5f/3
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Figure 1: A schematic summary of the workflow for creating mortality rate
projections by risk factor

2.1 Data

All demographic georeferenced microdata used in this research were provided by the
Spanish National Institute of Statistics (INE) as part of the project BE092-093-2021,
‘Efectos Sociales y Económicos de las Fluctuaciones Intra-anuales en los Eventos
Demográficos.’ The data were provided by INE after submitting a research plan with
administrative approval and making an advance payment. Specifically, we obtained the
following datasets: (1) individual records of deaths, including the exact date of birth and
death and the census section of residence of each deceased; (2) individual records of
births by date of birth and municipality; (3) internal and external residential variations by
municipality, including the date of birth and residential variation; and (4) population
stocks as registered on 1 January each year, containing for each resident his/her date of
birth and census section of residence. The datasets used in this study are sex-
disaggregated and were provided by INE under a confidentiality agreement, in full
compliance with Spain’s data protection law, which prohibits the disclosure of individual
records or cross-referencing personal data. The publication of aggregated data and
derived results, such as those we have produced, is permitted.

Each demographic microdatum is processed a total of four times: once when
estimating age–sex death rates conditioned on each risk factor (income level, habitat size,
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and climate zone) and again when estimating base or baseline death rates, which does not
account for any of the risk factors. Each of the risk factors is divided into different levels,
allowing the population to be segmented at higher levels of homogeneity. The
segmentations, in addition to considering gender and age, allow the population to be
grouped based on specific levels of each variable.

2.2 Segmentation by risk factors

Stratification by income divides the population into four groups based on quartiles of per
capita income measured at the census section of residence: low, low-medium, medium-
high, and high income levels. The variable is provided by INE, free of charge. Each
individual is assigned to an income level according to her/his census section of residence,
so this variable can be considered as capturing ‘contextual wealth effects’ of the area of
residence rather than the effect of individual income on mortality risks. Indeed, since
recent research suggests that Spanish census sections are becoming more internally
homogeneous due to residential segregation processes, exacerbating economic and social
disparities between areas (Lledó and Pavía 2024), this partition also offers the advantage
of capturing contextual area-related factors, such as the socioeconomic conditions of the
neighbourhoods, which also influence death probabilities.

Census section per capita income has been categorised into only four levels to
prevent the small group sizes that could result from considering additional levels, which
would increase variability. It is important to note that the analyses are conducted for each
individual age and sex without aggregating age groups, and that income groups are
determined on a yearly basis, from 2010 to 2019. Although the classifications remain
very stable over time, this means that a specific census section (and its residents) could
belong to different risk groups in different years. These issues will be further discussed
in Section 5, where we present the limitations of our study.

The climate areas are determined using a set of climate-related variables, which
include temperature, precipitation, wind velocity, and atmospheric pressure, collected
daily (from 1 January 2010 to 31 December 2021) at 272 meteorological stations. These
data were obtained from the Spanish State Meteorological Agency (AEMET) and were
extrapolated to each census section using Kriging (Matheron 1963). Cluster analysis was
employed to analyse all the climatological data, identify the optimal number of groups,
and create the clusters. In particular, census sections were grouped using the k-means
algorithm. The final climate division categorises Spain into 6 spatially climatological
zones/areas, which we call the Mediterranean climate area (including the Spanish coastal
areas of the Mediterranean Sea), Subtropical climate area (the Canary Islands), Central-
continental climate area (the very central part of Spain surrounding Madrid), North-



Demographic Research: Volume 52, Article 1

https://www.demographic-research.org 7

continental climate area (areas nearby and in Aragon and Castile-Leon), South-
continental climate area (areas nearby and within Andalusia, excluding its coastal areas,
as well as Extremadura and Castile La Mancha), and Oceanic climate area (Atlantic and
Cantabrian coastal areas). Each person is assigned to a climatological area following
his/her census section of residence. This process was conducted for each year, comparing
the obtained clusters, which remain unchanged, thereby ensuring a consistent
classification over time. This means that although temperatures may rise, the invariable
aggregation of areas with a similar climate guarantees that this increase will similarly
impact all its sub-regions, so the classification is not affected.

It is important to note that our approach differs from the well-known global climate
classification system provided by the Köppen-Geiger maps (Peel, Finlayson, and
McMahon 2007), based on 0.5° grids, and their recent adaptation into 1-kilometre grids
(Beck et al. 2023). Unlike these global systems, which are designed to categorise climate
zones based on broad environmental criteria, our method focuses on a more tailored
division suited to the specific characteristics and needs of our area of analysis, Spain.

The population is also divided by habitat size into 4 levels based on the registered
population in each municipality on the first day of each year. Municipalities are grouped
as follows: those with fewer than 10,000 inhabitants, those with more than 10,000 but
fewer than 50,000 inhabitants, those with more than 50,000 but fewer than 250,000
residents, and those municipalities with more than 250,000 residents. Each demographic
event is assigned to a habitat size in line with the size of the municipality where it is
recorded.

2.3 Estimates of raw death rates

Once demographic events are divided into groups, according to the levels of the factor
under consideration (where it should be noted that residential variations between groups
are observed as external movements), the next step is to estimate (crude) central death
rates by age and sex. The death rate at a specific age 𝑥, 𝑚𝑥, is estimated as the quotient
between the number of deaths recorded at age 𝑥, 𝐷𝑥, and the total exposure to death at
age 𝑥, 𝐿𝑥. Our study has an annual periodicity, with crude death rates estimated for each
age 𝑥 (with ages ranging from 0 to 107), sex 𝑠 (men and women), and year 𝑡 (where 𝑡
ranges from 2010 to 2019). Predictions extend this timeframe to the year 2050. The
estimations of total exposure are based on population stocks, number of deaths, and
residential changes or migration flows (Pavía and Lledó 2022). For 𝑥 > 0, the total
exposure at risk for group 𝑓𝑖 is estimated as follows:
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where 𝑓𝑖 denotes the level 𝑖 of risk factor 𝑓, 𝑃𝑥,𝑑,𝑠,𝑡
𝑓𝑖  stands for the number of individuals

(population stock) with exact age 𝑥 + 𝑑 at the beginning of the year, 𝐼𝑥+𝑑,𝜏,𝑠,𝑡
𝑓𝑖 , 𝐸𝑥+𝑑,𝜏,𝑠,𝑡

𝑓𝑖

and 𝐷𝑥+𝑑,𝜏,𝑠,𝑡
𝑓𝑖  represent the number of immigrants, emigrants, and deaths, respectively,

recorded with exact age 𝑥 + 𝑑 on the calendar day 𝜏 with sex 𝑠 in year 𝑡, 𝐵𝜏,𝑠,𝑡
𝑓𝑖  designates

the number of births registered on calendar day 𝜏, 𝑇 is the total number of days in the
calendar year, and ζ𝑗 is a random number from a uniform distribution between 0 and 1,
introduced to avoid systematic bias, that simulates the exact time within a day when a
demographic event (birth, emigration, or death) occurs.

Central mortality rates are computed as quotients between the number of deaths
recorded at age 𝑥 in year 𝑡 for each level 𝑖 of risk factor 𝑓, 𝐷𝑥,𝑠,𝑡

𝑓𝑖 , and 𝐿𝑥,𝑠,𝑡
𝑓𝑖 , the number

of person years from which 𝐷𝑥,𝑠,𝑡
𝑓𝑖  occurred, as follows:

𝑚ෝ𝑥,𝑠,𝑡
𝑓𝑖 =

𝐷𝑥,𝑠,𝑡
𝑓𝑖

𝐿𝑥,𝑠,𝑡
𝑓𝑖

. (3)

The estimation of the mortality rates for all the combinations of year, age, sex, and
level of risk factor requires the handling of a huge quantity of microdata, a total of 2
billion microdata events. To manage this, we have developed scripts ad hoc in the free
statistical software R (R Core Team 2024) with the help of packages dplyr (Wickham et
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al. 2023) for performing data wrangling, and qlifetable (Pavía and Lledó 2024) for
calculating times of exposure and counting the number of deaths.

2.4 Smoothing death rates

Given the continuous nature of human ageing and the gradual improvements in
healthcare, nutrition, and living conditions that typically occur over extended periods,
mortality risks are expected to evolve smoothly as a function of both age and time.
However, raw estimates of central death rates are rarely that smooth, often showing
erratic peaks and random fluctuations. An example of this can be seen in the series of raw
estimates displayed in Figure 2a, where crude death probabilities by sex (with men as red
points and women as blue triangles) corresponding to the year 2019 are displayed in the
log scale for the low-income group. If these irregular fluctuations in the mortality trends
are not properly addressed, they will eventually affect future predictions.

Figure 2: Estimates of raw and smoothed death probabilities by sex
(women: blue triangles; men: red points) for the low income level
during 2019

Note: Raw estimates (panel a) were obtained after log-transforming the death probabilities implied by the estimated death rates attained
using Equation (3). Intermediate smooth estimates (panel b) were obtained by fitting raw estimates using cubic natural splines. Final
estimates (panel c) were obtained by fitting a GLM model for extreme ages and after imposing a gradual transition between smooth
and model estimates. All the probabilities are presented in log-scale, with the R package ggplot2 (Wickham 2016) used for visualization.
Source: Compiled by the authors.
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Therefore, it is essential to correct anomalies and random variations, eliminate
unusual values, and achieve a smooth trend that more accurately reflects the underlying
risk process. To manage this issue, demographers and actuaries routinely apply
smoothing techniques (see, e.g., D’Amato, Piscopo, and Russolillo 2011): we apply
natural cubic splines (Reinsch 1967) as a smoothing technique. The aim of this technique
is to minimise the sum of squared residuals while penalising excessive curvature to
prevent overfitting. An example of smoothness of crude series of death probabilities can
be seen in Figure 2b, which shows the smoothed death probabilities corresponding to the
raw estimates drawn in Figure 2a.

2.5 Mortality at the oldest ages

Once smoothing splines are applied to fix random fluctuations and outliers, we then
consider the estimates corresponding to the smallest cohorts – those with a small number
of person-years exposed to risk of dying. In our estimates we detect an illogical
decreasing mortality trend for the oldest extreme ages, likely caused by an accumulation
over time of small inaccuracies due to unidentified deaths not being recorded in the
population registers (Cairns et al. 2016). These inaccuracies inflate the number of
survivors at older ages, particularly noticeable when the actual number of survivors is
small. To rectify this trend and also extend estimates of death probabilities up to age 120,
we model the estimated trend in death probabilities within each sex and group for the
oldest ages. As life expectancy has been rising every year, to properly forecast death rates
over the years to come, it seems appropriate to extend the age range of death-rate
estimates beyond the oldest age available in our database, which is currently 107 years.

When modelling estimated death probabilities, we intentionally exclude ages where
illogical estimates are observed. Specifically, taking as global reference the minimum age
by sex across groups when the crude estimated mortality trends start to decline, we
consider the previous ten ages for modelling. This results in modelling the range of ages
87 to 97 for males and 90 to 100 for females.

For modelling, we leverage the fact that the biometric variable 𝐷𝑥,𝑠,𝑡
𝑓𝑖  – which

measures the number of deaths at age 𝑥 and year 𝑡 for the risk factor 𝑓 and level factor 𝑖
for sex 𝑠 – theoretically follows a binomial distribution with size being (approximately)
the semi-sum of the total person-years exposed to risk with ages 𝑥 − 1 and 𝑥, 12(𝐿𝑥−1,𝑠,𝑡

𝑓𝑖 +
𝐿𝑥,𝑠,𝑡
𝑓𝑖 ), and probability parameter being the death probability, 𝑞𝑥,𝑠,𝑡

𝑓𝑖 , and specify a
generalised linear model (GLM) with time as predictor and 𝐷𝑥,𝑠,𝑡

𝑓𝑖  as a binomial response
variable. This model is used to obtain (initial) estimates of death probabilities from age
𝑥0 to 120 (with 𝑥0 being equal to 87 for males and 90 for females), which are combined
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with the smoothed estimates. To guarantee a smooth transition between smoothed and
model estimates, we calculate, for the range of ages 𝑥 = 𝑥0, 𝑥0 + 1, … , 𝑥0 + 10, final
estimates as weighted averages of smoothed and model estimates with respective weights
equal to 1 − (𝑥 − 𝑥0)/10 and (𝑥 − 𝑥0)/10. As an example of final estimates of death
probabilities, Figure 2c shows the final death probabilities corresponding to the raw
estimates drawn in Figure 2a.

2.6 Forecasts of death rates

The last part of the process (see Figure 1) consists of projecting death rates. This topic
has received significant attention in the literature over recent years due to the growing
interest in longevity and its associated challenges, and the potential offered by models to
predict future mortality trends and patterns. Many mortality models observe the rates as
a function of age, period, and cohort. Accordingly, Hunt and Blake (2020) developed a
taxonomy of models with these dimensions in mind. Nevertheless, all the models can be
thought of as particular instances of generalised age–period–cohort models (GAPC)
(Villegas, Millossovich, and Kaishev 2018), whose general predictor structure is:

𝜂𝑥,𝑡 = 𝛼𝑥 + ∑ 𝛽𝑥
(𝑖)𝜅𝑡

(𝑖) + 𝛽𝑥
(0) 𝛾𝑡−𝑥,𝑁

𝑖=1 (4)

where 𝜂𝑥,𝑡 is the transformation of the death rate at age 𝑥 and time period 𝑡; 𝛼𝑥 denotes
the general mortality shape over a specific age 𝑥 and across all ages; 𝛽𝑥

(𝑖)𝜅𝑡
(𝑖) is the

product of the time trend 𝜅𝑡 with 𝛽𝑥 denoting the mortality changes across ages; and
𝛽𝑥

(0) 𝛾𝑡−𝑥 is the product between the cohort term, 𝛾𝑡−𝑥, and an age function 𝛽𝑥
(0).

The GAPC models selected to forecast in our application are the Lee–Carter model
(Lee and Carter 1992), probably the most well-known mortality forecasting model; the
age–period–cohort (APC) model, which is a substructure of the model proposed by
Renshaw and Haberman (Renshaw and Haberman 2006); and the Plat model (Plat 2009),
which combines two age–period terms with a number of Lee-Carter characteristics. Once
the predictions up to year 2050 for each model are estimated, we then apply splines to
obtain a more realistic and smoother trend. We consider having several death rate
predictions to be a richness in data as this allows model uncertainties to be incorporated
into the analyses. This approach provides more flexible and robust forecasts, enabling
better planning for future scenarios and enhanced decision-making.
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3. Estimated and forecasted death rates

The previous section details the sequential process followed to estimate and project
central mortality rates by age and sex up to 2050, conditioned on the three risk factors
under consideration (income, habitat size, and climate area), using georeferenced
microdata from the population of Spain. This section describes the two open-format files
(available at https://data.mendeley.com/datasets/jbtwjbgx5f/3) generated after applying
the process illustrated in Figure 1. The files are organised by variables, in a long–wide
format.

The first file, called Estimates of death rates, Spain 2010–2019, by risk factor.csv,
offers the results of converting nearly two billion microdata events into estimates of
central mortality rates for each risk factor, categorised according to various variables.
Table 1 provides an extract from the file, which has a total of 36,300 rows (central
mortality rate estimates) of which 32,400 correspond to raw central mortality rate
estimates. The first two variables (columns) in the file indicate the time dimensions of
the estimates: 𝑎𝑔𝑒 (from 0 to 120 years) and 𝑦𝑒𝑎𝑟 (from 2010 to 2019). Following the
variable for 𝑠𝑒𝑥, there are two variables that determine the risk profile: 𝑟𝑖𝑠𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 and
f𝑎𝑐𝑡𝑜𝑟_𝑙𝑒𝑣𝑒𝑙. The 𝑟𝑖𝑠𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 variable indicates the risk factor (income, habitat size,
and climate), while the 𝑓𝑎𝑐𝑡𝑜𝑟_𝑙𝑒𝑣𝑒𝑙 variable designates the corresponding level of the
factor, according to the following keys:

 Climate. C1: Central-continental, C2: Canary Islands, C3: Mediterranean, C4:
North-continental, C5: South-continental and C6: Oceanic.

 Habitat. H1: fewer than 10,000 inhabitants, H2: more than 10,000 but fewer than
50,000 inhabitants, H3: more than 50,000 but fewer than 250,000 residents, and
H4: more than 250,000 residents.

 Income. I1: low, I2: low-medium, I3: medium-high, and I4: high.

The baseline estimates are identified in the 𝑟𝑖𝑠𝑘_𝑓𝑎𝑐𝑡𝑜𝑟 variable using the same
name, with no level in the 𝑓𝑎𝑐𝑡𝑜𝑟_𝑙𝑒𝑣𝑒𝑙.

The columns identified with the biometric variables 𝐿𝑥, 𝐷𝑥, 𝑚𝑥_𝑟𝑎𝑤 correspond to
the results from applying formulas (1), (2), and (3), respectively. The variable
𝑚𝑥_𝑠𝑚𝑜𝑜𝑡ℎ contains the values obtained after applying the smoothing techniques and
correcting for inconsistencies at extreme ages. The values for the columns of raw and
smoothed probabilities (𝑞𝑥_𝑟𝑎𝑤 and 𝑞𝑥_𝑠𝑚𝑜𝑜𝑡ℎ), which indicate the probability that an
individual aged 𝑥 will not reach age 𝑥 + 1, 𝑞𝑥, are calculated using the relation between
𝑞𝑥 and 𝑚𝑥 under the assumption of uniform intra-age distribution of deaths:

𝑞𝑥 = 𝑚𝑥
1+0.5·𝑚𝑥

.
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Table 1: Extract of the file corresponding to estimates of death rates
age Year sex risk_factor factor_level Lx Dx mx_raw qx_raw qx_smooth mx_smooth
0 2010 men climate C1 44,820.40 175 0.003904 0.003897 0.000540 0.000540
0 2010 men climate C2 8,556.78 32 0.003740 0.003733 0.000381 0.000381
… … … … … … … … … … …
50 2015 women habitat H1 72,245.40 125 0.001730 0.001729 0.001488 0.001489
50 2015 women habitat H2 97,014.65 143 0.001474 0.001473 0.001501 0.001502
… … … … … … … … … … …
65 2019 women income I3 62,690.12 369 0.005886 0.005869 0.005127 0.005141
65 2019 women income I4 74,788.67 321 0.004292 0.004283 0.004652 0.004663
… … … … … … … … … … …
45 2015 men baseline 383,399.13 650 0.001695 0.001694 0.001715 0.001716
45 2016 men baseline 385,144.65 631 0.001638 0.001637 0.001648 0.001650
… … … … … … … … … … …

Note: The file, which contains 36,300 rows, includes raw and (final) smoothed estimates of central mortality rates and probabilities of
death for the years 2010 to 2019, categorised by age, sex, and risk factor, with risk factors divided into several levels: climatic condition
(C1, C2, C3, C4, C5, C6), habitat size (H1, H2, H3, H4), and income level (I1, I2, I3, I4). The table also presents risk exposures,
calculated using formula (1), number of deaths, and estimates without dividing the population by risk factors.

The second file, called Forecasts of death rates, Spain 2020–2050, by risk
factor.csv, includes the projections of the death rates from 2020 to 2050. In total, it
contains 337,590 projected central mortality rates, segmented by risk factors and
forecasting model. Table 2 presents a sample of rows from this file. This file shares some
variables with the previous file and includes the variable 𝑓_𝑚𝑜𝑑𝑒𝑙 which informs about
the model used for forecasting: LC, APC, or PLAT.

Table 2: Extract of the file corresponding to forecasts of death rates
age year sex risk_factor factor_level f_model mx qx qx_smooth mx_smooth
0 2020 men climate C1 LC 0.000504 0.000504 0.000502 0.000502
0 2020 men climate C2 LC 0.000538 0.000538 0.000536 0.000536
… … … … … … … … … …
50 2030 women habitat H1 APC 0.000951 0.000951 0.000952 0.000952
50 2030 women habitat H2 APC 0.001008 0.001008 0.001009 0.001009
… … … … … … … … … …
65 2026 women income I3 PLAT 0.005036 0.005024 0.005025 0.005037
65 2026 women income I4 PLAT 0.004288 0.004279 0.004278 0.004287
… … … … … … … … … …
45 2032 women baseline LC 0.000836 0.000836 0.000835 0.000836
45 2032 women baseline APC 0.000661 0.000661 0.000657 0.000657
… … … … … … … … … …

Note: The file, which contains 337,590 rows, includes initial and smoothed predictions/projections of central mortality rates and
probabilities of deaths for the years 2020 to 2050, categorised by age, sex, risk factor, and forecasting model (LC, APC, and PLAT).
Each risk factor is divided into several levels: climatic condition (C1, C2, C3, C4, C5, C6), habitat size (H1, H2, H3, H4), and income
level (I1, I2, I3, I4). The table also presents baseline forecasts, obtained without dividing the population by risk factors.
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4. Data validation

In this research we have processed and summarised an extensive database consisting of
over 1,997 million microdata events. The process involved multiple stages, each
requiring rigorous data validation controls to guarantee accuracy and reliability. In this
section we detail the main validation tests performed. Initial checks involved verifying
the correctness of recorded dates in each microdata entry. Birth dates recorded in both
population registers and birth datasets must not be later than the date of data extraction.
For population movements, including deaths, emigration, and immigration, the date of
birth must not occur after the date of death or the date of the movement. Also, the
artificially inflated record of immigrants being given the first day of the year as their birth
date (Lledó, Pavía, and Simó-Noguera 2024) is taken into account.

The levels for each risk factor are assigned to each individual based on the
geolocation attached to the microdata. Income levels and climatological areas are
determined by the census section, while habitat size is assigned based on the municipality
of residence. Using geolocated microdata, we generate the numerators, 𝐷𝑥,𝑠,𝑡

𝑓𝑖 , and
denominators, 𝐿𝑥,𝑠,𝑡

𝑓𝑖 , needed to calculate the central mortality rates across groups. Two
validation controls are performed during this process. First, we compare the total number
of deaths by age, sex, and risk factor to guarantee they match the baseline data. Second,
we verify that the time of risk exposure, categorised by age, sex, and risk factor, aligns
with the baseline risk exposures. We find no discrepancies for counts of number of deaths
and extremely small discrepancies for time of exposure. Some discrepancies for the latter
variable are expected even with perfect programming and data. Table 3 displays for each
risk factor and year the relative differences between the aggregates of time exposed by
level and age for each risk factor and the corresponding aggregates without dividing the
population for level of risk factor, with discrepancies calculated as in Equation (5):

 2
ቂቀ∑ 𝐿𝑥,𝑠,𝑡

𝑓𝑖𝑛𝑓
𝑖=1 ቁ − 𝐿𝑥,𝑠,𝑡

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒ቃ

ቀ∑ 𝐿𝑥,𝑠,𝑡
𝑓𝑖𝑛𝑓

𝑖=1 ቁ+ 𝐿𝑥,𝑠,𝑡
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

, (5)

where 𝑓 denotes the risk factor (income, habitat, or climate) with 𝑖 being one of its levels,
𝑖 ∈ {1,⋯ ,𝑛𝑓}; 𝑛𝑓 the number of levels; 𝑥 age, with 𝑥 being a natural number between 0
and 107; 𝑠 sex; and 𝑡 the time period, where 𝑡 is a year between 2010 and 2019.
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Table 3: Relative differences between the time exposed to each risk factor and
the baseline

Habitat size Income Climate
Year Men Women Men Women Men Women
2010 0.00113 0.00206 0.00109 0.00202 0.00081 0.00169
2011 0.00135 0.00215 0.00116 0.00201 0.00064 0.00147
2012 0.00050 0.00146 0.00041 0.00134 0.00003 0.00092
2013 –0.00051 0.00034 –0.00064 0.00020 –0.00119 –0.00035
2014 –0.00035 0.00032 –0.00035 0.00029 –0.00062 –0.00001
2015 0.00096 0.00137 0.00082 0.00123 0.00028 0.00068
2016 0.00170 0.00223 0.00160 0.00209 0.00113 0.00162
2017 0.00230 0.00286 0.00224 0.00278 0.00191 0.00241
2018 0.00445 0.00451 0.00439 0.00446 0.00417 0.00420
2019 0.00661 0.00628 0.00646 0.00613 0.00595 0.00562

The minor differences observed in Table 3 could be attributed to the random
component assigned to the exact time of occurrence of each demographic event (birth,
death, and movements) within a given day and to the fact that the effective number of
residential variations is different, conditioned on each risk factor. For instance, a
residential variation between different census sections within the same climatological
area is omitted when the risk factor is climate, but is taken into account when the risk
factor under consideration is income and it entails a change between income levels.

In addition to conducting internal validations, we have also carried out external
validations. Specifically, we have compared the observed and predicted death
probabilities from our study with those provided by other organisations, as summarised
in Tables 4 and 5. Table 4 presents the absolute differences between the death
probabilities available for Spain in the HMD database (Human Mortality Database 2024)
and our baseline estimates. Table 5 summarises the absolute differences between the
World Population Prospects (WPP) predictions and our model predictions, also
considering our baseline data. Table 4 presents comparisons by year (2010–2019),
including the overall average, across sexes, and with individuals grouped into 5 age
categories. By contrast, Table 5 aggregates data into 10-year intervals, using slightly
different age groups. The maximum age in Table 5 is 99, as WPP life tables end at that
age.
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Table 4: Summary of discrepancies in absolute values with HMD-estimated
death probabilities

Men Women
Year 0 [1, 85] (85, 90] (90, 100] >100 0 [1, 85] (85, 90] (90, 100] >100
2010 0.00263 0.00018 0.00467 0.03050 0.01953 0.00243 0.00013 0.00175 0.03084 0.06305
2011 0.00255 0.00020 0.00549 0.03505 0.03390 0.00239 0.00013 0.00070 0.02676 0.03838
2012 0.00259 0.00019 0.00528 0.03815 0.03278 0.00227 0.00011 0.00128 0.03233 0.06168
2013 0.00222 0.00017 0.00504 0.03968 0.06054 0.00200 0.00012 0.00118 0.02977 0.06694
2014 0.00239 0.00020 0.00249 0.03135 0.02981 0.00218 0.00010 0.00115 0.02715 0.06624
2015 0.00232 0.00021 0.00401 0.03011 0.02352 0.00207 0.00008 0.00117 0.02915 0.06174
2016 0.00246 0.00023 0.00320 0.02740 0.02043 0.00184 0.00011 0.00137 0.02621 0.06220
2017 0.00233 0.00024 0.00230 0.02200 0.01850 0.00203 0.00010 0.00138 0.02515 0.05401
2018 0.00213 0.00021 0.00172 0.01619 0.0240 0.00206 0.00014 0.00143 0.02342 0.04864
2019 0.00228 0.00023 0.00225 0.01589 0.01894 0.00186 0.00010 0.00123 0.02151 0.05118
Average 0.00239 0.00021 0.00364 0.02863 0.02819 0 .00211 0.00011 0.00126  0.02723 0.05741

In Table 4, the largest differences are observed in the youngest age group (age 0)
and the oldest age groups (90–100 and over 100 years). For age 0, the discrepancy arises
from the different methods used to derive, from estimated death rates, death probabilities.
HMD uses an approximation (Wilmoth et al. 2021), while our study uses microdata to
calculate the average age at death for new-borns, 𝑎0, specific to the Spanish population.
For ages above 90, the differences result from distinct methodologies and model-fitting
age ranges. HMD smooths death rates using a logistic curve from ages 80 to 110,
assuming a Poisson distribution for deaths (Wilmoth et al. 2021), while our approach
extends probabilities to age 120 with a generalised linear model with binomial response,
fitted to the last 10 observed ages before death probabilities decline. In the core age range
[1, 85], where no modelling was applied, the differences are negligible.

Similar to the findings for estimated death probabilities (see Table 4), the largest
discrepancies in predictions (see Table 5) occur at older ages, with these differences
increasing, as expected, over time. This variation arises from the differing methodologies
applied to observed data for older age groups and the predictive model employed by WPP
(United Nations, Department of Economic and Social Affairs, Population Division 2024),
which does not align with any of our forecasting models. The WPP forecasts are
generated using an extended Lee-Carter model (Li, Lee, and Gerland 2013). Notably, for
the oldest ages, the smallest differences between WPP values and our forecasts are
observed when we apply the Lee-Carter model. Again, the central age ranges show very
small absolute differences.
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Table 5: Summary of discrepancies in absolute values with WPP-predicted
death probabilities

Men Women
Model Year 0 [1, 65] (65, 75] (75, 85] (85, 99] 0 [1, 65] (65, 75] (75, 85] (85, 99]

APC

2020–30 0.00193 0.00035 0.00130 0.00505 0.03780 0.00150 0.00011 0.00134 0.00202 0.02566

2031–40 0.00142 0.00059 0.00202 0.00505 0.05873 0.00093 0.00011 0.00238 0.00471 0.03457

2041–50 0.00115 0.00064 0.00453 0.00887 0.07272 0.00063 0.00008 0.00178 0.00806 0.03323

Average 0.00150 0.00053 0.00262 0.00632 0.05642 0.00102 0.00010 0.00183 0.00493 0.03115

LC

2020–30 0.00182 0.00026 0.00239 0.00611 0.01382 0.00155 0.00015 0.00130 0.00497 0.01718

2031–40 0.00123 0.00048 0.00501 0.01228 0.01097 0.00096 0.00030 0.00288 0.01028 0.01742

2041–50 0.00089 0.00064 0.00706 0.01717 0.02431 0.00064 0.00043 0.00417 0.01477 0.02250

Average 0.00131 0.00046 0.00482 0.01185 0.01637 0.00105 0.00029 0.00278 0.01001 0.01903

PLAT

2020–30 0.00194 0.00027 0.00138 0.00330 0.03280 0.00154 0.00013 0.00111 0.00243 0.02731

2031–40 0.00145 0.00037 0.00123 0.00232 0.04234 0.00106 0.00012 0.00183 0.00382 0.03444

2041–50 0.00119 0.00030 0.00137 0.00177 0.04270 0.00081 0.00010 0.00134 0.00748 0.03012

Average 0.00153 0.00031 0.00133 0.00246 0.03928 0.00114 0.00012 0.00143 0.00458 0.03062

5. Data potentialities and limitations

Forecasted life tables are of value for many agents, including insurers, demographers,
and social planners. For insurers, life tables are crucial for evaluating risks and
determining life insurance premiums. Demographers use series of life tables to analyse
population mortality trends, while social planners rely on them to anticipate future social
needs. Examining a series of life tables can provide insight into mortality patterns over
time and aid financial planning and public policy development.

In this study we have created two groups of life tables, one based on estimated,
realised death rates, and the other with predicted rates. Additionally, we have developed
life tables not only for the general population but also segmented by various risk factors
such as income, climate, and habitat size. This stratification allows for the aggregation of
data into more homogeneous groups, reducing heterogeneity when applied to individuals.
Understanding these data is relevant, as it can directly improve the functioning of key
economic sectors, including the insurance industry and the management of pension funds
(Külekci and Selcuk-Kestel 2021).

Indeed, the potential applications of these two databases extend across multiple
fields. For instance, they could be used to properly quantify expected increases in
longevity risks, which have a profound impact on the healthcare system. The future health
needs of an ageing population play a crucial role in healthcare planning and resource
allocation. Anticipating these needs can significantly enhance the effectiveness of public
health management. Our database can provide Spanish health managers with access to
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future projections of mortality rates segmented by various risk factors, enabling more
accurate forecasts for both the overall population and specific sub-groups. This allows
for more effective resource allocation and infrastructure planning in geographical areas
where future needs are expected to be greatest. Furthermore, when combined with data
on migration patterns and birth rates, this information can provide valuable insights for
forecasting future demands in educational infrastructure, childcare facilities, and
transportation systems.

The generated datasets are also of value for the insurance industry, particularly for
implementing better pricing schemes. Following the Test-Achats ruling, which prohibits
the use of sex as a pricing factor in the European Union (EU), life insurance companies
in the EU are, in practice, limited to using age as the primary pricing criterion. However,
the assumption that all individuals of the same age share similar death risks a priori (i.e.,
without an initial health examination) is debatable, if not outright erroneous. Using our
estimates, actuaries and risk managers could incorporate three, easily observable,
additional risk factors – income level, habitat size, and climatic area of residence – into
their life insurance pricing processes. This would enable better portfolio segmentation
and more precise alignment of premiums with individual risk profiles, resulting in more
accurate and equitable insurance premiums. In this context, the area of study initiated by
Lledó and Pavía (2024) is noteworthy. They suggest modelling the differences between
baseline and income-based death rates to develop a series of risk coefficients that capture
the varying risks associated with different income levels (contextual wealth effects). This
set of coefficients can be directly applied to any life table, whether for the general or
insured population, to improve the calculation of premiums and reserves.

Our results, however, are not without limitations. As the unusual estimated mortality
trends at the extreme oldest ages show, errors in official records are possible. Despite our
thorough checks and validation processes, some errors may still remain undetected,
potentially affecting the findings. While data accuracy is crucial in empirical research,
issues with data quality are a recurring challenge in demographic studies (e.g., Cairns et
al. 2009), though fortunately they typically have a very limited impact.

A limitation of our results is that mortality trends can be significantly affected by
social, health, or economic crises, as well as by major medical advances, which can
sometimes lead to structural changes (Preston 1977; Van Berkum, Antonio, and
Vellekoop 2016). For example, future severe economic downturns, civil unrest, wars, or
pandemics could transform our predictions into underestimates. A recent instance is the
COVID-19 pandemic, which caused a temporary spike in death rates, particularly among
individuals aged 50 and older (Lledó, Pavía, and Sánchez 2023). Indeed, to mitigate the
impact of this unusual event, we deliberately exclude the years 2020 to 2021 from our
estimates. This prevents contamination of future projections with the temporal anomalies
produced by the COVID-19 pandemic. By contrast, significant improvements in the
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public healthcare system or in medical advances could reduce future death rates,
converting our forecasted death rates into overestimates. Furthermore, our climate
classifications alone do not account for extreme weather events which can have a
significant impact on health and increase mortality risk, especially among the more
vulnerable populations. However, it is reasonable to expect that certain extreme
conditions may be more likely to occur in specific climates. For example, as recent
experience shows, severe heat waves are more likely to occur in regions with warmer
climates (ECMWF 2024), such as the South-continental climate area, composed of areas
near and within Andalusia (excluding its coastal areas) as well as Extremadura and
Castile La Mancha.

When classifying mortality risks, an additional factor to consider is how risks are
managed when either an individual or a census section transitions to a new mortality risk
group. Specifically, the questions arise about which life table should be applied to the
residents of a census section that moves, for example, from a medium-low income level
to a medium-high income level, or which life table should be used for a person migrating
between climate groups. Although census sections and habitat sizes show considerable
stability regarding the risk factors analysed in this study, we adopt a similar approach to
that followed in demography concerning foreign immigrants, where it is (implicitly)
assumed that new residents face the same mortality risks as the native population. In this
case, we consider that the person or group immediately adopts the risk profile of their
new group, without accounting for past data, including their previous risk levels and
history. This approach overlooks the potential long-term effects of prior exposure to
different risk factors.

Another limitation of our study is that it does not address the construction of life
tables that intersect multiple risk factors. This presents a potential avenue for future
research, which could involve estimating life tables for combinations of mortality risk
factors or developing an algorithm to calculate new coefficients that account for these
interactions. In some regions of Spain these risk factors are highly correlated, and
different risk factors often overlap within the same areas. Finally, it is important to note
that income levels and habitat sizes have been categorised into only four groups to avoid
dividing the population into segments that are too small, which could hinder the ability
to obtain reliable results due to limited data. A potential solution to increase the number
of groups and generate more adjusted estimates could be to use 5-year age groupings, as
this would help enlarge sample sizes and would probably not affect accuracy. Increasing
the number of groups could also enable the use of modelling in a second step, to exploit
the underlying continuous nature of these factors. This is certainly a topic that warrants
further research in the future.
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6. Data statement

The raw data used in this research include (1) birth statistics, (2) stocks of population, (3)
microdata of deaths, (4) residential variations microdata, (5) per capita income statistics
and (6) climatological data. Demographic microdata was acquired from INE (the Spanish
official statistics office) in compliance with their approved procedures, following a
research-focused request and payment in advance (<https://ine.es/infoine/>). Per capita
income statistics are available at the link: <https://links.uv.es/eoHKMd0>.
Climatological data are available at AEMET <https://www.aemet.es/es/portada>. The
files with the results described in this research are available at the link
https://data.mendeley.com/datasets/jbtwjbgx5f/3. The degree of accuracy/reliability of
the results derived from the exploitation of the data provided by INE is the sole
responsibility of the authors.
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