Volume 50 - Article 11 | Pages 325–346
Longevity à la mode: A discretized derivative tests method for accurate estimation of the adult modal age at death
By Paola Vazquez-Castillo, Marie-Pier Bergeron-Boucher, Trifon Missov
References
Barbi, E., Lagona, F., Marsili, M., Vaupel, J.W., and Wachter, K.W. (2018). The plateau of human mortality: Demography of longevity pioneers. Science 360(6396): 1459–1461.
Basellini, U. and Camarda, C.G. (2019). Modelling and forecasting adult age-at-death distributions. Population Studies 73(1): 119–138.
Bergeron-Boucher, M., Vázquez-Castillo, P., and Missov, T.I. (2023). A modal age at death approach to forecasting mortality. (Population Studies (forthcoming) Preprint:).
Bergeron-Boucher, M.P., Ebeling, M., and Canudas-Romo, V. (2015). Decomposing changes in life expectancy: Compression versus shifting mortality. Demographic Research 33(14): 391–424.
Camarda, C.G. (2012). MortalitySmooth: An R package for smoothing Poisson counts with P-Splines. Journal of Statistical Software 50: 1–24.
Canudas-Romo, V. (2008). The modal age at death and the shifting mortality hypothesis. Demographic Research 19(30): 1179–1204.
Canudas-Romo, V. (2010). Three measures of longevity: Time trends and record values. Demography 47(2): 299–312.
Diaconu, V., Raalte, A., and Martikainen, P. (2022). Why we should monitor disparities in old-age mortality with the modal age at death. PLOS ONE 17(2): 0263626.
Ediev, D. (2011). At the modal age at death, the hazard rate is determined by its derivative. Vienna: Vienna Institute of Demography, VID Working Papers 8/2011.
Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science 11(2): 89–121.
HMD (2023). Human Mortality Database. Max Planck Institute for Demographic Research.
Horiuchi, S. and Coale, A.J. (1990). Age patterns of mortality for older women: An analysis using the age‐specific rate of mortality change with age. Mathematical Population Studies 2(4): 245–267.
Horiuchi, S. and Ouellette, N. (2020). Modal age at death. Cham: Springer International Publishing.
Horiuchi, S., Ouellette, N., Cheung, S.L.K., and Robine, J.M. (2013). Modal age at death: Lifespan indicator in the era of longevity extension. Vienna Yearbook of Population Research 11: 37–69.
Horiuchi, S. and Wilmoth, J.R. (1997). Age patterns of the life table aging rate for major causes of death in Japan, 1951–1990. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 52(1): 67–77.
Kannisto, V. (2001). Mode and dispersion of the length of life. Population: An English Selection 13(1): 159–171.
Lexis, W. (1878). Sur la durée normale de la vie humaine et sur la théorie de la stabilité des rapports statistiques. Annales de Démographie Internationale 2: 447–462.
Missov, T.I., Lenart, A., Nemeth, L., Canudas-Romo, V., and Vaupel, J.W. (2015). The Gompertz force of mortality in terms of the modal age at death. Demographic Research 32(36): 1031–1048.
Missov, T.I. and Németh, L. (2015). Sensitivity of model-based human mortality measures to exclusion of the Makeham or the frailty parameter. Genus 71(2–3): 113–135.
Ouellette, N. and Bourbeau, R. (2011). Changes in the age-at-death distribution in four low mortality countries: A nonparametric approach. Demographic Research 25(19): 595–628.
Pollard, J.H. (1991). Fun with Gompertz. Genus 47(1–2): 1–20.
Preston, S., Heuveline, P., and Guillot, M. (2001). Demography: Measuring and modeling population processes. Hoboken, NJ: Blackwell Publisher.
Ramsey, J. and Ripley, B. (2022). Pspline: Penalized smoothing splines. R package version 1.0-19 [electronic resource].
Robine, J.M. (2018). Age at death, the return of an old metric whose importance is growing. Aging Clinical and Experimental Research 30(10): 1147–1149.
Thatcher, A.R., Cheung, S.L.K., Horiuchi, S., and Robine, J.M. (2010). The compression of deaths above the mode. Demographic Research 22(17): 505–538.
Vaupel, J.W. (2010). Biodemography of human ageing. Nature 464(7288): 536–542.
Vaupel, J.W. (1998). Demographic analysis of aging and longevity. The American Economic Review 88(2): 242–247.
Vaupel, J.W. (2022). The pull of the plateau and the sway of the mode: Formal relationships to estimate the pace of senescence. SocArXiv Papers.
Vaupel, J.W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(3): 439–454.
Vaupel, J.W. and Missov, T.I. (2014). Unobserved population heterogeneity: A review of formal relationships. Demographic Research 31(22): 659–686.
Vaupel, J.W. and Zhang, Z. (2010). Attrition in heterogeneous cohorts. Demographic Research 23(26): 737–748.
Véron, J., Rohrbasser, J.M., and Mendelbaum, J. (2003). Wilhelm Lexis: The normal length of life as an expression of the ‘nature of things’. Population 58(3): 303–322.
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Cham: Springer International Publishing.
Wilmoth, J. and Horiuchi, S. (1999). Rectangularization revisited: Variability of age at death within human populations. Demography 36(4): 475–495.