Volume 50 - Article 11 | Pages 325–346  

Longevity à la mode: A discretized derivative tests method for accurate estimation of the adult modal age at death

By Paola Vazquez-Castillo, Marie-Pier Bergeron-Boucher, Trifon Missov

References

Barbi, E., Lagona, F., Marsili, M., Vaupel, J.W., and Wachter, K.W. (2018). The plateau of human mortality: Demography of longevity pioneers. Science 360(6396): 1459–1461.

Weblink:
Download reference:

Basellini, U. and Camarda, C.G. (2019). Modelling and forecasting adult age-at-death distributions. Population Studies 73(1): 119–138.

Weblink:
Download reference:

Bergeron-Boucher, M., Vázquez-Castillo, P., and Missov, T.I. (2023). A modal age at death approach to forecasting mortality. (Population Studies (forthcoming) Preprint:).

Weblink:
Download reference:

Bergeron-Boucher, M.P., Ebeling, M., and Canudas-Romo, V. (2015). Decomposing changes in life expectancy: Compression versus shifting mortality. Demographic Research 33(14): 391–424.

Weblink:
Download reference:

Camarda, C.G. (2012). MortalitySmooth: An R package for smoothing Poisson counts with P-Splines. Journal of Statistical Software 50: 1–24.

Weblink:
Download reference:

Canudas-Romo, V. (2008). The modal age at death and the shifting mortality hypothesis. Demographic Research 19(30): 1179–1204.

Weblink:
Download reference:

Canudas-Romo, V. (2010). Three measures of longevity: Time trends and record values. Demography 47(2): 299–312.

Weblink:
Download reference:

Diaconu, V., Raalte, A., and Martikainen, P. (2022). Why we should monitor disparities in old-age mortality with the modal age at death. PLOS ONE 17(2): 0263626.

Weblink:
Download reference:

Ediev, D. (2011). At the modal age at death, the hazard rate is determined by its derivative. Vienna: Vienna Institute of Demography, VID Working Papers 8/2011.

Download reference:

Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science 11(2): 89–121.

Weblink:
Download reference:

HMD (2023). Human Mortality Database. Max Planck Institute for Demographic Research.

Weblink:
Download reference:

Horiuchi, S. and Coale, A.J. (1990). Age patterns of mortality for older women: An analysis using the age‐specific rate of mortality change with age. Mathematical Population Studies 2(4): 245–267.

Weblink:
Download reference:

Horiuchi, S. and Ouellette, N. (2020). Modal age at death. Cham: Springer International Publishing.

Weblink:
Download reference:

Horiuchi, S., Ouellette, N., Cheung, S.L.K., and Robine, J.M. (2013). Modal age at death: Lifespan indicator in the era of longevity extension. Vienna Yearbook of Population Research 11: 37–69.

Weblink:
Download reference:

Horiuchi, S. and Wilmoth, J.R. (1997). Age patterns of the life table aging rate for major causes of death in Japan, 1951–1990. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 52(1): 67–77.

Weblink:
Download reference:

Kannisto, V. (2001). Mode and dispersion of the length of life. Population: An English Selection 13(1): 159–171.

Weblink:
Download reference:

Lexis, W. (1878). Sur la durée normale de la vie humaine et sur la théorie de la stabilité des rapports statistiques. Annales de Démographie Internationale 2: 447–462.

Download reference:

Missov, T.I., Lenart, A., Nemeth, L., Canudas-Romo, V., and Vaupel, J.W. (2015). The Gompertz force of mortality in terms of the modal age at death. Demographic Research 32(36): 1031–1048.

Weblink:
Download reference:

Missov, T.I. and Németh, L. (2015). Sensitivity of model-based human mortality measures to exclusion of the Makeham or the frailty parameter. Genus 71(2–3): 113–135.

Download reference:

Ouellette, N. and Bourbeau, R. (2011). Changes in the age-at-death distribution in four low mortality countries: A nonparametric approach. Demographic Research 25(19): 595–628.

Weblink:
Download reference:

Pollard, J.H. (1991). Fun with Gompertz. Genus 47(1–2): 1–20.

Download reference:

Preston, S., Heuveline, P., and Guillot, M. (2001). Demography: Measuring and modeling population processes. Hoboken, NJ: Blackwell Publisher.

Download reference:

Ramsey, J. and Ripley, B. (2022). Pspline: Penalized smoothing splines. R package version 1.0-19 [electronic resource].

Robine, J.M. (2018). Age at death, the return of an old metric whose importance is growing. Aging Clinical and Experimental Research 30(10): 1147–1149.

Weblink:
Download reference:

Thatcher, A.R., Cheung, S.L.K., Horiuchi, S., and Robine, J.M. (2010). The compression of deaths above the mode. Demographic Research 22(17): 505–538.

Weblink:
Download reference:

Vaupel, J.W. (2010). Biodemography of human ageing. Nature 464(7288): 536–542.

Weblink:
Download reference:

Vaupel, J.W. (1998). Demographic analysis of aging and longevity. The American Economic Review 88(2): 242–247.

Download reference:

Vaupel, J.W. (2022). The pull of the plateau and the sway of the mode: Formal relationships to estimate the pace of senescence. SocArXiv Papers.

Weblink:
Download reference:

Vaupel, J.W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(3): 439–454.

Weblink:
Download reference:

Vaupel, J.W. and Missov, T.I. (2014). Unobserved population heterogeneity: A review of formal relationships. Demographic Research 31(22): 659–686.

Weblink:
Download reference:

Vaupel, J.W. and Zhang, Z. (2010). Attrition in heterogeneous cohorts. Demographic Research 23(26): 737–748.

Weblink:
Download reference:

Véron, J., Rohrbasser, J.M., and Mendelbaum, J. (2003). Wilhelm Lexis: The normal length of life as an expression of the ‘nature of things’. Population 58(3): 303–322.

Weblink:
Download reference:

Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Cham: Springer International Publishing.

Download reference:

Wilmoth, J. and Horiuchi, S. (1999). Rectangularization revisited: Variability of age at death within human populations. Demography 36(4): 475–495.

Weblink:
Download reference:

Back to the article