Volume 50 - Article 10 | Pages 291–324  

Measuring short-term mobility patterns in North America using Facebook advertising data, with an application to adjusting COVID-19 mortality rates

By Lindsay Katz, Michael Chong, Monica Alexander

References

Ahmad, F. and Cisewski, J. (2023). Quarterly provisional estimates for selected indicators of mortality, 2020-quarter 2, 2022. Hyattsville, MD: National Center for Health Statistics. National Vital Statistics System, Vital Statistics Rapid Release Program.

Download reference:

Alessandretti, L. (2022). What human mobility data tell us about COVID-19 spread. Nature Reviews Physics 4(1): 12–13.

Weblink:
Download reference:

Alexander, M., Polimis, K., and Zagheni, E. (2020). Combining social media and survey data to nowcast migrant stocks in the United States. Population Research and Policy Review 41: 1–28.

Weblink:
Download reference:

Alexander, M., Polimis, K., and Zagheni, E. (2019). The impact of Hurricane Maria on out-migration from Puerto Rico: Evidence from Facebook data. Population and Development Review 45(3): 617–630.

Weblink:
Download reference:

Auliya, S.F. and Wulandari, N. (2021). The impact of mobility patterns on the spread of the COVID-19 in Indonesia. Journal of Information Systems Engineering and Business Intelligence 7(1): 31–41.

Weblink:
Download reference:

Bell, M. and Ward, G. (2000). Comparing temporary mobility with permanent migration. Tourism Geographies 2(1): 87–107.

Weblink:
Download reference:

Bell, M. and Ward, G. (1998). Patterns of temporary mobility in Australia: Evidence from the 1991 census. Australian Geographical Studies 36(1): 58–81.

Weblink:
Download reference:

Bernard, A. and Perales, F. (2021). Is migration a learned behavior? Understanding the impact of past migration on future migration. Population and Development Review 47(2): 449–474.

Weblink:
Download reference:

Brownstein, J.S., Wolfe, C.J., and Mandl, K.D. (2006). Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. PLoS Medicine 3(10): 401.

Weblink:
Download reference:

Bureau of Transportation Statistics (2023). Airline on-time statistics, details statistics arrivals.

Cebeillac, A. and Vaguet, Y. (2021). What can we learn from Airbnb data on tourist flows? A case study on Iceland. Espace populations sociétés. Space Populations Societies .

Weblink:
Download reference:

Dickson, J. (2021). A tale of two COVID-19 hot spots: Ontario and Quebec take different approaches to confronting third wave.

Edwards, W. (2013). Temporary internal migration: Inferences from survey data. Journal of Northern Studies 7(2): 75–93.

Download reference:

Erbach-Schoenberg, E., Alegana, V.A., Sorichetta, A., Linard, C., Lourenço, C., Ruktanonchai, N.W., Graupe, B., Bird, T.J., Pezzulo, C., Wesolowski, A., and Tatem, A.J. (2016). Dynamic denominators: The impact of seasonally varying population numbers on disease incidence estimates. Population Health Metrics 14(35): 1–10.

Weblink:
Download reference:

Fields, R., Humphrey, L., Flynn-Primrose, D., Mohammadi, Z., Nahirniak, M., Thommes, E., and Cojocaru, M. (2021). Age-stratified transmission model of COVID-19 in Ontario with human mobility during pandemic’s first wave. Heliyon 7(9): e07905.

Weblink:
Download reference:

Findlater, A. and Bogoch, I.I. (2018). Human mobility and the global spread of infectious diseases: A focus on air travel. Trends in Parasitology 34(9): 772–783.

Weblink:
Download reference:

Fiorio, L., Abel, G., Cai, J., Zagheni, E., Weber, I., and Vinué, G. (eds.) (2017). Using Twitter data to estimate the relationship between short-term mobility and long-term migration. New York, NY: ACM (Proceedings of the 2017 ACM on web science conference).

Weblink:
Download reference:

Grais, R.F., Hugh Ellis, J., and Glass, G.E. (2003). Assessing the impact of airline travel on the geographic spread of pandemic influenza. European Journal of Epidemiology 18: 1065–1072.

Weblink:
Download reference:

Iuliano, A.D., Roguski, K.M., Chang, H.H., Muscatello, D.J., Palekar, R., Tempia, S., Cohen, C., Gran, J.M., Schanzer, D., Cowling, B.J., Wu, P., Kyncl, J., Ang, L.W., Park, M., Redlberger-Fritz, M., Yu, H., Espenhain, L., Krishnan, A., Emukule, G., Asten, L.van, Silva, S., Aungkulanon, S., Buchholz, U., Widdowson, M.A., and Bresee, J.S. (2018). Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. The Lancet 391(10127): 1285–1300.

Weblink:
Download reference:

Jdanov, D.A., Galarza, A.A., Shkolnikov, V.M., Jasilionis, D., Németh, L., Leon, D.A., Boe, C., and Barbieri, M. (2021). The short-term mortality fluctuation data series, monitoring mortality shocks across time and space. Scientific Data 8(1): 235.

Weblink:
Download reference:

Leasure, D.R., Kashyap, R., Rampazzo, F., Dooley, C.A., Elbers, B., Bondarenko, M., Verhagen, M., Frey, A., Yan, J., Akimova, E.T., Fatehkia, M., Trigwell, R., Tatem, A.J., Weber, I., and Mills, M.C. (2023). Nowcasting daily population displacement in Ukraine through social media advertising data. Population and Development Review 49(2): 231–254.

Weblink:
Download reference:

Marshall, M. and Syed, K. (2020). Map: Coronavirus travel restrictions by state.

Meta (2023). Basic targeting [electronic resource].

Miranda-González, A., Aref, S., Theile, T., and Zagheni, E. (2020). Scholarly migration within Mexico: Analyzing internal migration among researchers using Scopus longitudinal bibliometric data. EPJ Data Science 9(34).

Weblink:
Download reference:

Molloy, R., Smith, C.L., and Wozniak, A. (2011). Internal migration in the United States. Journal of Economic Perspectives 25(3): 173–196.

Weblink:
Download reference:

National Center for Health Statistics (2023). Provisional COVID-19 deaths by sex and age [dataset] [electronic resource].

Weblink:
Download reference:

Panczak, R., Charles-Edwards, E., and Corcoran, J. (2020). Estimating temporary populations: A systematic review of the empirical literature. Humanities and Social Sciences Communications 6(87): 1–10.

Weblink:
Download reference:

Rampazzo, F., Bijak, J., Vitali, A., Weber, I., and Zagheni, E. (2021). A framework for estimating migrant stocks using digital traces and survey data: An application in the United Kingdom. Demography 58(6): 2193–2218.

Weblink:
Download reference:

Slater, J.J., Brown, P.E., Rosenthal, J.S., and Mateu, J. (2022). Capturing spatial dependence of COVID-19 case counts with cellphone mobility data. Spatial Statistics 49: 100540.

Weblink:
Download reference:

Spyratos, S., Vespe, M., Natale, F., Weber, I., Zagheni, E., and Rango, M. (2018). Migration data using social media: A European perspective. Luxembourg: Publications Office of the European Union.

Weblink:
Download reference:

State, B., Rodriguez, M., Helbing, D., and Zagheni, E. (eds.) (2014). Migration of professionals to the US: Evidence from LinkedIn data. Barcelona, Spain: Springer (Social informatics: International conference, SocInfo 2014).

Weblink:
Download reference:

Subbotin, A. and Aref, S. (2021). Brain drain and brain gain in Russia: Analyzing international migration of researchers by discipline using Scopus bibliometric data 1996–2020. Scientometrics 126(9): 7875–7900.

Weblink:
Download reference:

The New York Times (2020). See coronavirus restrictions and mask mandates for all 50 states.

The New York Times (2021). See reopening plans and mask mandates for all 50 states.

United States Census Bureau (2023). 2000 national population projections datasets: Annual projections of the resident population by age, sex, race, and Hispanic origin, 1999–2100: Middle series [dataset] [electronic resource].

United States Census Bureau (2023). State population by characteristics: 2020–2022 [electronic resource].

Vieira, C.C., Fatehkia, M., Garimella, K., Weber, I., and Zagheni, E. (2022). Using Facebook and LinkedIn data to study international mobility. SocArXiv Papers.

Weblink:
Download reference:

Wilton, D. and Wirjanto, T. (1998). An analysis of the seasonal variation in the national tourism indicators. Ottawa: Canadian Tourism Commission.

Download reference:

Xu, Y., Xue, J., Park, S., and Yue, Y. (2021). Towards a multidimensional view of tourist mobility patterns in cities: A mobile phone data perspective. Computers, Environment and Urban Systems 86: 101593.

Weblink:
Download reference:

Zagheni, E., Garimella, V.R.K., Weber, I., and State, B. (eds.) (2014). Inferring international and internal migration patterns from Twitter data. New York, NY: ACM (Proceedings of the 23rd international conference on world wide web).

Weblink:
Download reference:

Zagheni, E., Weber, I., and Gummadi, K. (2017). Leveraging Facebook’s advertising platform to monitor stocks of migrants. Population and Development Review 43(4): 721–734.

Weblink:
Download reference:

Zargari, F., Aminpour, N., Ahmadian, M.A., Samimi, A., and Saidi, S. (2022). Impact of mobility on COVID-19 spread: A time series analysis. Transportation Research Interdisciplinary Perspectives 13: 100567.

Weblink:
Download reference:

Zhao, X., Akbaritabar, A., Kashyap, R., and Zagheni, E. (2023). A gender perspective on the global migration of scholars. Proceedings of the National Academy of Sciences 120(10): e2214664120.

Weblink:
Download reference:

zu Erbach-Schoenberg, E., Alegana, V.A., Sorichetta, A., Linard, C., Lourenço, C., Ruktanonchai, N.W., Graupe, B., Bird, T.J., Pezzulo, C., Wesolowski, A., and Tatem, A.J. (2016). Dynamic denominators: The impact of seasonally varying population numbers on disease incidence estimates. Population Health Metrics 14(35): 1–10.

Weblink:
Download reference:

Back to the article