Volume 49 - Article 40 | Pages 1117–1162
Programmatic access to open statistical data for population studies: The SDMX standard
References
Agresti, A. (2013). Categorical data analysis. Wiley.
Bauer, P.C. and Landesvatter, C. (2023). Writing a reproducible paper with R Markdown and Pagedown.
Bishop, Y.M., Fienberg, S.E., and Holland, P.W. (2007). Discrete multivariate analysis: Theory and practice. Cambridge, Mass: MIT Press.
Blondel, E. (2023). rsdmx – Tools for eeading SDMX data and metadata in R (R package Version 0.6-3) [electronic resource].
Blondel, E. (2015). rsdmx – tools for reading SDMX data and metadata documents in R(slides) [electronic resource].
Blondel, E. (2023). rsdmx Quickstart guide [electronic resource].
European Commission Expert Group on FAIR Data (2018). Turning FAIR data into reality. Brussels: European Commission.
Frank, M. and Hartgerink, C. (2017). RMarkdown for writing reproducible scientific papers [electronic resource].
Gillman, D. (2023). Achieving transparency: A metadata perspective. Data Intelligence 5(1): 261–274.
Gylling, K.C. (2019). Pyscbwrapper 0.1.1.
IUSSP – CODATA Working Group on FAIR Vocabularies (2023). FAIR Vocabularies in population Research. Report of the IUSSP – CODATA Working Group on FAIR Vocabularies. Paris: IUSSP; CODATA.
Macoveiciuc, A. (2020). Beginner’s guide to APIs, protocols and formats. Frontend Digest 29(April).
Magnusson, M., Kainu, M., Huovari, J., and Lahti, L. (2022). pxweb: R Interface to PXWEB APIs. Version 0.16.2 [electronic resource].
Mészáros, M. (2023). Restatapi: Search and retrieve data from Eurostat Database (r Package Version 0.20.6) [electronic resource].
National Academies of Sciences, Engineering, Medicine, and others, (2022). Transparency in statistical information for the National Center for Science and Engineering Statistics and All Federal Statistical Agencies. Washington, DC: The National Academies Press.
Ooms, J. (2014). The jsonlite package: A practical and consistent mapping between JSON data and R objects [electronic resource].
Piburn, J. (2020). wbstats: Programmatic Access to the World Bank API. Oak Ridge, Tennessee: Oak Ridge National Laboratory.
Queljoe, M. de (2023). readsdmx: Read SDMX-XML Data [electronic resource].
R Core Team (2022). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Ševčı́ková, H. (2023). wpp2022 United Nations World Population Prospects 2022 [electronic resource].
Stahl, R. and Staab, P. (2018). Measuring the data universe. Data integration using statistical data and metadata exchange. Springer.
Thiry, G., Manolescu, I., and Liberti, L. (2020). A question answering system for interacting with SDMX databases. In: NLIWOD 2020-6th natural language interfaces for the web of data/workshop (in conjunction with ISWC. .
Wickham, H. (2019). Advanced R. Boca Raton, Florida: CRC press.
Wickham, H. (2023). httr: Tools for Working with URLs and HTTP (R Package Version 1.4.6).
Wickham, H., Hester, J., and Ooms, J. (2021). Xml2: Parse XML (R Package Version 1.3.3).
Wilkinson, M.D., Dumontier, M., Aalbersberg, IjJ, Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.W., Silva Santos, L.B.da, and Bourne, P.E. (2016). The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3(1): 1–9.
World Wide Web Consortium (2014). The RDF data cube vocabulary [electronic resource].
Xie, Y. (2023). Knitr: A General-Purpose Package for Dynamic Report Generation in R. Version 1.44 [electronic resource].