Volume 43 - Article 54 | Pages 1563–1606  

A spatial population downscaling model for integrated human-environment analysis in the United States

By Hamidreza Zoraghein, Brian C. O'Neill

References

Anselin, L. (1995). Local indicators of spatial association – LISA. Geographical analysis 27(2): 93–115.

Download reference:

Balk, D., Leyk, S., Jones, B., Montgomery, M.R., and Clark, A. (2018). Understanding urbanization: A study of census and satellite-derived urban classes in the United States, 1990–2010. PLoS One 13(12): e0208487.

Weblink:
Download reference:

Balk, D.L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S.I., and Nelson, A. (2006). Determining global population distribution: Methods, applications and data. Advances in Parasitology 62: 119–156.

Weblink:
Download reference:

Ballas, D., Clarke, G.P., and Wiemers, E. (2005). Building a dynamic spatial microsimulation model for Ireland. Population, Space and Place 11(3): 157–172.

Weblink:
Download reference:

Bengtsson, M., Shen, Y., and Oki, T. (2006). A SRES-based gridded global population dataset for 1990–2100. Population and Environment 28(2): 113–131.

Weblink:
Download reference:

Bhaduri, B., Bright, E., Coleman, P., and Urban, M. (2007). LandScan USA: A high-resolution geospatial and temporal modeling approach for population distribution and dynamics. GeoJournal 69(1–2): 103–117.

Download reference:

Bierwagen, B.G., Theobald, D.M., Pyke, C.R., Choate, A., Groth, P., Thomas, J.V., and Morefield, P. (2010). National housing and impervious surface scenarios for integrated climate impact assessments. Proceedings of the National Academy of Sciences 107(49): 20887–20892.

Weblink:
Download reference:

Braimoh, A.K. and Onishi, T. (2007). Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 24(2): 502–515.

Weblink:
Download reference:

Caminade, C., Kovats, S., Rocklov, J., Tompkins, A.M., Morse, A.P., Colón-González, F.J., Stenlund, H., Martens, P., and Lloyd, S.J. (2014). Impact of climate change on global malaria distribution. Proceedings of the National Academy of Sciences 111(9): 3286–3291.

Weblink:
Download reference:

Columbia University – Center for International Earth Science Information Network – CIESIN (2018). Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11. (Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11.).

Download reference:

Dobson, J.E., Bright, E.A., Coleman, P.R., Durfee, R.C., and Worley, B.A. (2000). LandScan: A global population database for estimating populations at risk. Photogrammetric Engineering and Remote Sensing 66(7): 849–857.

Download reference:

Dodman, D. (2009). Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environment and Urbanization 21: 185–201.

Weblink:
Download reference:

Dong, W., Liu, Z., Liao, H., Tang, Q., and Li, X. (2015). New climate and socio-economic scenarios for assessing global human health challenges due to heat risk. Climatic Change 130(4): 505–518.

Weblink:
Download reference:

Ewing, R. and Rong, F. (2008). The impact of urban form on U.S. residential energy use. Housing Policy Debate 19(1): 1–30.

Weblink:
Download reference:

Gao, J. and O’Neill, B.C. (2019). Data-driven spatial modeling of global long-term urban land development: The SELECT model. Environmental Modelling and Software 119: 458–471.

Weblink:
Download reference:

Gasparrini, A., Guo, Y., Sera, F., Vicedo-Cabrera, A.M., Huber, V., Tong, S., Sousa Zanotti Stagliorio Coelho, M., Nascimento Saldiva, P.H., Lavigne, E., Matus Correa, P., Valdes Ortega, N., Kan, H., Osorio, S., Kyselý, J., Urban, A., Jaakkola, J.J.K., Ryti, N.R.I., Pascal, M., Goodman, P.G., Zeka, A., Michelozzi, P., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Diaz, M., Cesar Cruz, J., Seposo, X., Kim, H., Tobias, A., Iñiguez, C., Forsberg, B., Åström, D.O., Ragettli, M.S., Guo, Y.L., Wu, C. fu, Zanobetti, A., Schwartz, J., and Armstrong, B. (2017). Projections of temperature-related excess mortality under climate change scenarios. The Lancet Planetary Health 1(9): 360–367.

Weblink:
Download reference:

Georgescu, M., Morefield, P.E., Bierwagen, B.G., and Weaver, C.P. (2014). Urban adaptation can roll back warming of emerging megapolitan regions. Proceedings of the National Academy of Sciences 111(8): 2909–2914.

Weblink:
Download reference:

Grübler, A., O’Neill, B., Riahi, K., Chirkov, V., Goujon, A., Kolp, P., Prommer, I., Scherbov, S., and Slentoe, E. (2007). Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technological Forecasting and Social Change 74(7): 980–1029.

Weblink:
Download reference:

Güneralp, B. and Seto, K.C. (2013). Futures of global urban expansion: Uncertainties and implications for biodiversity conservation. Environmental Research Letters 8(1).

Weblink:
Download reference:

Hales, S., De Wet, N., Maindonald, J., and Woodward, A. (2002). Potential effect of population and climate changes on global distribution of dengue fever: An empirical model. Lancet 360(9336): 830–834.

Weblink:
Download reference:

Hanasaki, N., Fujimori, S., Yamamoto, T., Yoshikawa, S., Masaki, Y., Hijioka, Y., Kainuma, M., Kanamori, Y., Masui, T., Takahashi, K., and Kanae, S. (2013). A global water scarcity assessment under Shared Socio-economic Pathways – Part 2: Water availability and scarcity. Hydrology and Earth System Sciences 9(12): 2393–2413.

Weblink:
Download reference:

Hardy, R.D. and Hauer, M.E. (2018). Social vulnerability projections improve sea-level rise risk assessments. Applied Geography 91: 10–20.

Weblink:
Download reference:

Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and Megown, K. (2015). Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing 81(5): 345–354.

Weblink:
Download reference:

Jones, B. and O’Neill, B.C. (2013). Historically grounded spatial population projections for the continental United States. Environmental Research Letters 8(4): 044021.

Weblink:
Download reference:

Jones, B. and O’Neill, B.C. (2016). Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environmental Research Letters 11(8).

Weblink:
Download reference:

Jones, B., O’Neill, B.C., McDaniel, L., McGinnis, S., Mearns, L.O., and Tebaldi, C. (2015). Future population exposure to US heat extremes. Nature Climate Change 5(7): 652–655.

Weblink:
Download reference:

Jongman, B., Winsemius, H.C., Aerts, J.C.J.H., Perez, E., Aalst, M.K., Kron, W., and Ward, P.J. (2015). Declining vulnerability to river floods and the global benefits of adaptation. Proceedings of the National Academy of Sciences 112(18): 2271–2280.

Weblink:
Download reference:

Knorr, W., Jiang, L., and Arneth, A. (2016). Climate, CO2 and human population impacts on global wildfire emissions. Biogeosciences 13(1): 267–282.

Weblink:
Download reference:

Kraft, D. (1988). A software package for sequential quadratic programming. Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, Forschungsbericht.

Download reference:

Landis, J.D. (1994). The California Urban Futures Model: A new generation of metropolitan simulation models. Environment and Planning B: Planning and Design 21(4): 399–420.

Weblink:
Download reference:

Lehner, F. and Stocker, T.F. (2015). From local perception to global perspective. Nature Climate Change 5(8): 731–734.

Weblink:
Download reference:

Leyk, S. and Uhl, J.H. (2018). Data descriptor: HISDAC-US, historical settlement data compilation for the conterminous United States over 200 years. Scientific Data 5: 180175.

Weblink:
Download reference:

McDonald, J.F. (2014). What happened to and in Detroit? Urban Studies 51(16): 3309–3329.

Weblink:
Download reference:

McGranahan, G., Balk, D., and Anderson, B. (2007). The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization 19(1): 17–37.

Weblink:
Download reference:

McKee, J.J., Rose, A.N., Bright, E.A., Huynh, T., and Bhaduri, B.L. (2015). Locally adaptive, spatially explicit projection of US population for 2030 and 2050. Proceedings of the National Academy of Sciences 112(5): 1344–1349.

Weblink:
Download reference:

Meiyappan, P., Dalton, M., O’Neill, B.C., and Jain, A.K. (2014). Spatial modeling of agricultural land use change at global scale. Ecological Modelling 291: 152–174.

Weblink:
Download reference:

Minnesota Population Center (2016). National Historical Geographic Information System: Version 11.0 [Database].

Weblink:
Download reference:

Neumann, B., Vafeidis, A.T., Zimmermann, J., and Nicholls, R.J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding: A global assessment. PloS One 10(3): e0118571.

Weblink:
Download reference:

O’Neill, B.C., Kriegler, E., Ebi, K.L., Kemp-Benedict, E., Riahi, K., Rothman, D.S., Ruijven, B.J., Vuuren, D.P., Birkmann, J., Kok, K., Levy, M., and Solecki, W. (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change 42: 169–180.

Weblink:
Download reference:

Pesaresi, M., Ehrlich, D., Ferri, S., Florczyk, A., Freire, S., Halkia, M., Julea, A., Kemper, T., Soille, P., and Syrris, V. (2016). Operating procedure for the production of the global human settlement layer from Landsat data of the epochs. Ispra: Joint Research Centre, JRC Technical Reports.

Weblink:
Download reference:

Raupach, M.R., Rayner, P.J., and Paget, M. (2010). Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions. Energy Policy 38(9): 4756–4764.

Weblink:
Download reference:

Reimann, L., Merkens, J.L., and Vafeidis, A.T. (2018). Regionalized Shared Socioeconomic Pathways: narratives and spatial population projections for the Mediterranean coastal zone. Regional Environmental Change 18(1): 235–245.

Weblink:
Download reference:

Rohat, G. (2018). Projecting drivers of human vulnerability under the shared socioeconomic pathways. International Journal of Environmental Research and Public Health 15(3): 554.

Weblink:
Download reference:

Rossiter, K. (2011). What are census blocks? [electronic resource]

Santos, A., McGuckin, N., Nakamoto, H.Y., Gray, D., and Liss, S. (2011). Summary of travel trends: 2009 National Household Travel Survey. Washington, D.C: U.S. Department of Transportation Federal Highway Administration (FHWA).

Download reference:

Stimson, R., Bell, M., Corcoran, J., and Pullar, D. (2012). Using a large scale urban model to test planning scenarios in the Brisbane-South East Queensland region. Regional Science Policy and Practice 4(4): 373–392.

Weblink:
Download reference:

Verburg, P.H., Eck, J.R., Nijs, T.C.M., Dijst, M.J., and Schot, P. (2004). Determinants of land-use change patterns in the Netherlands. Environment and Planning B: Planning and Design 31(1): 125–150.

Weblink:
Download reference:

Vuuren, D.P., Lucas, P.L., and Hilderink, H. (2007). Downscaling drivers of global environmental change: Enabling use of global SRES scenarios at the national and grid levels. Global Environmental Change 17: 114–130.

Weblink:
Download reference:

Zhang, G., Ge, R., Lin, T., Ye, H., Li, X., and Huang, N. (2018). Spatial apportionment of urban greenhouse gas emission inventory and its implications for urban planning: A case study of Xiamen, China. Ecological Indicators 85: 644–656.

Weblink:
Download reference:

Zoraghein, H. and O’Neill, B. (2020). Data Supplement: U.S. state-level projections of the spatial distribution of population consistent with Shared Socioeconomic Pathways.

Weblink:
Download reference:

Zoraghein, H., O’Neill, B.C., and Vernon, C. (2020). Population Gravity Model.

Zwick, P.D. and Carr, M.H. (2006). Florida 2060: A population distribution scenario for the state of Florida. Gainesville: University of Florida, GeoPlan Center.

Download reference:

Back to the article