Volume 40 - Article 9 | Pages 219–260
Improving age measurement in low- and middle-income countries through computer vision: A test in Senegal
By Stephane Helleringer, Chong You, Laurence Fleury, Laetitia Douillot, Insa Diouf, Cheikh Tidiane Ndiaye, Valerie Delaunay, Rene Vidal
References
A’Hearn, B., Baten, J., and Crayen, D. (2009). Quantifying quantitative literacy: Age heaping and the history of human capital. The Journal of Economic History 69(3): 783–808.
AbouZahr, C., de Savigny, D., Mikkelsen, L., Setel, P.W., Lozano, R., Nichols, E., Notzon, F., and Lopez, A.D. (2015). Civil registration and vital statistics: Progress in the data revolution for counting and accountability. Lancet 10001(1373–1385).
Albert, A.M., Ricanek Jr., K., and Patterson, E. (2007). A review of the literature on the aging adult skull and face: Implications for forensic science research and applications. Forensic Science International 172(1): 1–9.
Bell, M., Charles‐Edwards, E., Ueffing, P., Stillwell, J., Kupiszewski, M., and Kupiszewska, D. (2015). Internal migration and development: Comparing migration intensities around the world. Population and Development Review 41(1): 33–58.
Bendavid, E., Seligman, B., and Kubo, J. (2011). Comparative analysis of old-age mortality estimations in Africa. PLoS One 6(10): e26607.
Bocquier, P., Sankoh, O., and Byass, P. (2017). Are health and demographic surveillance system estimates sufficiently generalizable? Global Health Action 10(1): 1356621.
Boerma, T. (2010). Foreword: The INDEPTH WHO–SAGE collaboration: Coming of age. Global Health Action 3.
Bühlmann, P., Drineas, P., Kane, M., and van der Laan, M. (2016). Handbook of big data. Boca Raton: CRC Press.
Burges, C.J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2): 121–167.
Caldwell, J.C. (1966). Study of age misstatement among young children in Ghana. Demography 3(2): 477–490.
Caldwell, J.C. and Igun, A.A. (1971). An experiment with census-type age enumeration in Nigeria. Population Studies 25(2): 287–302.
Cameriere, R., Pacifici, A., Pacifici, L., Polimeni, A., Federici, F., Cingolani, M., and Ferrante, L. (2016). Age estimation in children by measurement of open apices in teeth with Bayesian calibration approach. Forensic Science International 258: 50–54.
Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3): 27.
Chatterji, S. (2013). World Health Organisation’s (WHO) Study on Global Ageing and Adult Health (SAGE). BMC Proceedings 7(S4): S1.
Chen, C., Dantcheva, A., and Ross, A. (2014). Impact of facial cosmetics on automatic gender and age estimation algorithms. Paper presented at the 9th International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal, January 5–8, 2014.
Choi, S.E., Lee, Y.J., Lee, S.J., Park, K.R., and Kim, J. (2011). Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognition 44(6): 1262–1281.
Cootes, T. and Lanitis, A. (2008). The FG-NET aging database [electronic resource].
Corsi, D.J., Neuman, M., Finlay, J.E., and Subramanian, S.V. (2012). Demographic and health surveys: A profile. International Journal of Epidemiology 41(6): 1602–1613.
Delaunay, V., Douillot, L., Diallo, A., Dione, D., Trape, J.F., Medianikov, O., Raoult, D., and Sokhna, C. (2013). Profile: The Niakhar Health and Demographic Surveillance System. International Journal of Epidemiology 42(4): 1002–1011.
Dibeklioğlu, H., Alnajar, F., Salah, A.A., and Gevers, T. (2015). Combining facial dynamics with appearance for age estimation. IEEE Transactions on Image Processing 24(6): 1928–1943.
Eidinger, E., Enbar, R., and Hassner, T. (2014). Age and gender estimation of unfiltered faces. IEEE Transactions on Information Forensics and Security 9(12): 2170–2179.
Ekstrom, A.M., Clark, J., Byass, P., Lopez, A., de Savigny, D., Moyer, C.A., Campbell, H., Gage, A.J., Bocquier, P., AbouZahr, C., and Sankoh, O. (2016). INDEPTH network: Contributing to the data revolution. Lancet Diabetes and Endocrinology 4(2): 97.
Elhamifar, E. and Vidal, R. (2011). Robust classification using structured sparse representation. Paper presented at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, United States, June 20–25, 2011.
Elo, I.T., Mykyta, L., Sebastiani, P., Christensen, K., Glynn, N.W., and Perls, T. (2013). Age validation in the long life family study through a linkage to early-life census records. Journals of Gerontology Series B: Psychological Sciences and Social Sciences 68(4): 580–585.
Elo, I.T. and Preston, S.H. (1994). Estimating African-American mortality from inaccurate data. Demography 31(3): 427–458.
Elo, I.T., Turra, C.M., Kestenbaum, B., and Ferguson, B.R. (2004). Mortality among elderly Hispanics in the United States: Past evidence and new results. Demography 41(1): 109–128.
Eloundou-Enyegue, P. and Davanzo, J. (2003). Economic downturns and schooling inequality, Cameroon, 1987–95. Population Studies 57(2): 183–197.
Ewbank, D.C. (1981). Age misreporting and age-selective underenumeration: Sources, patterns and consequences for demographic analysis. Washington, D.C.: National Academy Press.
Fu, Y., Guo, G., and Huang, T.S. (2010). Age synthesis and estimation via faces: A survey. IEEE transactions on Pattern Analysis and Machine Intelligence 32(11): 1955–1976.
Fu, Y. and Huang, T.S. (2008). Human age estimation with regression on discriminative aging manifold. IEEE Transactions on Multimedia 10(4): 578–584.
GBD SDG Collaborators (2017). Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: An analysis from the Global Burden of Disease Study 2016. Lancet 390(10100): 1423–1459.
Geng, X., Yin, C., and Zhou, Z.-H. (2013). Facial age estimation by learning from label distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(10): 2401–2412.
Geng, X., Zhou, Z.-H., and Smith-Miles, K. (2007). Automatic age estimation based on facial aging patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12): 2234–2240.
Geng, X., Zhou, Z.-H., Zhang, Y., Li, G., and Dai, H. (2006). Learning from facial aging patterns for automatic age estimation. Paper presented at the 14th Annual ACM International Conference on Multimedia, Santa Barbara, United States, October 23–27, 2006.
George, P.A. and Hole, G.J. (2000). The role of spatial and surface cues in the age-processing of unfamiliar faces. Visual Cognition 7(4): 485–509.
Gessert, C.E., Elliott, B.A., and Haller, I.V. (2002). Dying of old age: An examination of death certificates of Minnesota centenarians. Journal of the American Geriatric Society 50(9): 1561–1565.
Guo, G., Fu, Y., Dyer, C.R., and Huang, T.S. (2008). Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Transactions on Image Processing 17(7): 1178–1188.
Guo, G., Mu, G., Fu, Y., Dyer, C., and Huang, T. (2009). A study on automatic age estimation using a large database. Paper presented at the 2009 IEEE 12th International Conference on Computer Vision (CVPR), Kyoto, Japan, September 29–October 2, 2009.
Guo, G. and Zhang, C. (2014). A study on cross-population age estimation. Paper presented at the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, United States, June 23–28, 2014.
Han, H., Otto, C., and Jain, A.K. (2013). Age estimation from face images: Human vs. machine performance. Paper presented at the 2013 International Conference on Biometrics (ICB), Madrid, Spain, June 4–7, 2013.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). Overview of supervised learning. In: Hastie, T., Tibshirani, R., and Friedman, J. (eds.). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer: 9–41.
Herbst, K., Juvekar, S., Bhattacharjee, T., Bangha, M., Patharia, N., Tei, T., Gilbert, B., and Sankoh, O. (2015). The INDEPTH data repository: An international resource for longitudinal population and health data from health and demographic surveillance systems. Journal of Empirical Research on Human Research Ethics 10(3): 324–333.
Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2003). A practical guide to support vector classification. Taipei City: Department of Computer Science, National Taiwan University (Technical report).
Kocabey, E., Camurcu, M., Ofli, F., Aytar, Y., Marin, J., Torralba, A., and Weber, I. (2017). Face-to-BMI: Using computer vision to infer body mass index on social media. arXiv preprint arXiv:1703.03156.
Kvaal, S.I., Kolltveit, K.M., Thomsen, I.O., and Solheim, T. (1995). Age estimation of adults from dental radiographs. Forensic Science International 74(3): 175–185.
Lanitis, A., Draganova, C., and Christodoulou, C. (2004). Comparing different classifiers for automatic age estimation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(1): 621–628.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521(7553): 436–444.
Li, C., Liu, Q., Liu, J., and Lu, H. (2012). Learning ordinal discriminative features for age estimation. Paper presented at the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, United States, June 16–21, 2012.
Luo, W., Nguyen, T., Nichols, M., Tran, T., Rana, S., Gupta, S., Phung, D., Venkatesh, S., and Allender, S. (2015). Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset. PLoS One 10(5): e0125602.
Meekers, D. and van Rossem, R. (2005). Explaining inconsistencies between data on condom use and condom sales. BMC Health Services Research 5(1): 5.
Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. (2013). Machine learning: An artificial intelligence approach. Berlin: Springer Science & Business Media.
Mikkelsen, L., Phillips, D.E., AbouZahr, C., Setel, P.W., de Savigny, D., Lozano, R., and Lopez, A.D. (2015). A global assessment of civil registration and vital statistics systems: monitoring data quality and progress. Lancet 386(10001): 1395–1406.
Mitchell, T., Buchanan, B., de Jong, G., Dietterich, T., Rosenbloom, P., and Waibel, A. (1990). Machine learning. Annual Review of Computer Science 4(417–433).
Mullainathan, S. and Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives 31(2): 87–106.
Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E.C., Biryukov, S., Abbafati, C., and Abera, S.F. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 384(9945): 766–781.
Notkola, V., Timæus, I.M., and Siiskonen, H. (2004). Impact on mortality of the AIDS epidemic in northern Namibia assessed using parish registers. AIDS 18(7): 1061–1065.
Notkola, V., Timæus, I.M., and Siiskonen, H. (2000). Mortality transition in the Ovamboland region of Namibia, 1930–1990. Population Studies 54(2): 153–167.
Palloni, A., Pinto, G., and Beltrán-Sánchez, H. (2014). Latin American Mortality Database (LAMBdA) [electronic resource]. Madison: Center of Demography and Health of Aging, University of Wisconsin–Madison.
Panis, G. and Lanitis, A. (2014). An overview of research activities in facial age estimation using the FG-NET aging database. Paper presented at the European Conference on Computer Vision, Zurich, Switzerland, September 6–12, 2014.
Parate, A., Chiu, M.-C., Chadowitz, C., Ganesan, D., and Kalogerakis, E. (2014). Risq: Recognizing smoking gestures with inertial sensors on a wristband. Paper presented at the 12th Annual International Conference on Mobile systems, applications, and services, Bretton Woods, United States, June 16–19, 2014.
Parkhi, O.M., Vedaldi, A., and Zisserman, A. (2015). Deep face recognition. Paper presented at the British Machine Vision Conference, Swansea, United Kingdom, September 7–10, 2015.
Paudel, D., Ahmed, M., Pradhan, A., and Dangol, R.L. (2013). Successful use of tablet personal computers and wireless technologies for the 2011 Nepal Demographic and Health Survey. Global Health: Science and Practice 1(2): 277–284.
Pison, G. (1980). Calculer l’âge sans le demander: Méthode d’estimation de l’âge et structure par âge des Peul Bandé [Calculating age without asking for it: Method of estimating the age and age-structure of the Peul-Bande]. Population 35(4–5): 861–892.
Preston, S.H. and Elo, I.T. (1999). Effects of age misreporting on mortality estimates at older ages. Population Studies 53(2): 165–177.
Preston, S.H., Elo, I.T., Rosenwaike, I., and Hill, M. (1996). African-American mortality at older ages: Results of a matching study. Demography 33(2): 193–209.
Pullum, T.W. (2006). An assessment of age and date reporting in the DHS Surveys 1985–2003. Calverton: Macro International (DHS Methodological Report No. 5).
Pullum, T.W. and Becker, S. (2014). Evidence of omission and displacement in DHS birth histories. Rockville: ICF (DHS Methodological Report No. 11).
Pullum, T.W. and Staveteig, S. (2017). An assessment of the quality and consistency of age and date reporting in DHS Surveys, 2000–2015. Rockville: ICF (DHS Methodological Report No. 19).
Qawaqneh, Z., Mallouh, A.A., and Barkana, B.D. (2017). Deep convolutional neural network for age estimation based on VGG-face model. arXiv preprint arXiv:1709.01664.
Randall, S. and Coast, E. (2016). The quality of demographic data on older Africans. Demographic Research 34(5): 143–174.
Ranjan, R., Sankaranarayanan, S., Castillo, C.D., and Chellappa, R. (2017). An all-in-one convolutional neural network for face analysis. Paper presented at the 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), Washington, D.C., United States, May 30–June 3, 2017.
Rasmussen, C.E. (2004). Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., and Rätsch, G. (eds.). Advanced lectures on machine learning. Berlin: Springer: 63–71.
Ren, F., Li, C., Xi, H., Wen, Y., and Huang, K. (2009). Estimation of human age according to telomere shortening in peripheral blood leukocytes of Tibetan. American Journal of Forensic Medicine and Pathology 30(3): 252–255.
Ricanek Jr., K. and Tesafaye, T. (2006). Morph: A longitudinal image database of normal adult age-progression. Paper presented at the 7th International Conference on Automatic Face and Gesture Recognition, Southampton, United Kingdom, April 10–12, 2006.
Ritz-Timme, S., Cattaneo, C., Collins, M., Waite, E., Schütz, H., Kaatsch, H.-J., and Borrman, H. (2000). Age estimation: the state of the art in relation to the specific demands of forensic practice. International Journal of Legal Medicine 113(3): 129–136.
Rosenwaike, I. and Stone, L.F. (2003). Verification of the ages of supercentenarians in the United States: Results of a matching study. Demography 40(4): 727–739.
Sankoh, O. and INDEPTH Network (2015). CHESS: An innovative concept for a new generation of population surveillance. Lancet Global Health 3(12): e742.
Senthilkumar, R. and Gnanamurthy, R. (2017). Performance improvement in classification rate of appearance based statistical face recognition methods using SVM classifier. Paper presented at the 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, January 6–7, 2017.
Serinelli, S., Panebianco, V., Martino, M., Battisti, S., Rodacki, K., Marinelli, E., Zaccagna, F., Semelka, R.C., and Tomei, E. (2015). Accuracy of MRI skeletal age estimation for subjects 12–19: Potential use for subjects of unknown age. International Journal of Legal Medicine 129(3): 609–617.
Sun, Y., Wang, X., and Tang, X. (2013). Deep convolutional network cascade for facial point detection. Paper presented at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, United States, June 25–27, 2013.
Suo, J., Wu, T., Zhu, S., Shan, S., Chen, X., and Gao, W. (2008). Design sparse features for age estimation using hierarchical face model. Paper presented at the 8th IEEE International Conference on Automatic Face and Gesture Recognition, Amsterdam, Netherlands, September 17–19, 2008.
Suykens, J.A. and Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters 9(3): 293–300.
Thukral, P., Mitra, K., and Chellappa, R. (2012). A hierarchical approach for human age estimation. Paper presented at the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, March 25–30, 2012.
Tolba, A., El-Baz, A., and El-Harby, A. (2006). Face recognition: A literature review. International Journal of Signal Processing 2(2): 88–103.
Tsuji, A., Ishiko, A., and Ikeda, N. (2005). Telomere shortening and age estimation in forensic medicine. Gerontology 51(6): 416.
Tsuji, A., Ishiko, A., Takasaki, T., and Ikeda, N. (2002). Estimating age of humans based on telomere shortening. Forensic Science International 126(3): 197–199.
Turra, C.M. and Elo, I.T. (2008). The impact of salmon bias on the Hispanic mortality advantage: New evidence from social security data. Population Research and Policy Review 27(5): 515–530.
Walters, S. (2016). Counting souls: Towards an historical demography of Africa. Demographic Research 34(3): 63–108.
Weber, M., Welling, M., and Perona, P. (2000). Unsupervised learning of models for recognition. Paper presented at the 6th European Conference on Computer Vision, ECCV 2000, Dublin, Ireland, June 26–July 1, 2000.
Yildiz, D., Munson, J., Vitali, A., Tinati, R., and Holland, J.A. (2017). Using Twitter data for demographic research. Demographic Research 37(46): 1477–1514.
Zheng, X., Wang, J., Shangguan, L., Zhou, Z., and Liu, Y. (2016). Smokey: Ubiquitous smoking detection with commercial WiFi infrastructures. Paper presented at the 35th Annual IEEE International Conference on Computer Communications, INFOCOM 2016, San Francisco, United States, April 10–15, 2015.
Zhu, K., Gong, D., Li, Z., and Tang, X. (2014). Orthogonal Gaussian process for automatic age estimation. Paper presented at the ACM International Conference on Multimedia, Orlando, United States, November 3–7, 2014.
Zubakov, D., Liu, F., Kokmeijer, I., Choi, Y., van Meurs, J.B.J., van Ijcken, W.F.J., Uitterlinden, A.G., Hofman, A., Broer, L., van Duijn, C.M., Lewin, J., and Kayser, M. (2016). Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length. Forensic Science International Genetics 24: 33–43.