Volume 40 - Article 9 | Pages 219–260  

Improving age measurement in low- and middle-income countries through computer vision: A test in Senegal

By Stephane Helleringer, Chong You, Laurence Fleury, Laetitia Douillot, Insa Diouf, Cheikh Tidiane Ndiaye, Valerie Delaunay, Rene Vidal

References

A’Hearn, B., Baten, J., and Crayen, D. (2009). Quantifying quantitative literacy: Age heaping and the history of human capital. The Journal of Economic History 69(3): 783–808.

Weblink:
Download reference:

AbouZahr, C., de Savigny, D., Mikkelsen, L., Setel, P.W., Lozano, R., Nichols, E., Notzon, F., and Lopez, A.D. (2015). Civil registration and vital statistics: Progress in the data revolution for counting and accountability. Lancet 10001(1373–1385).

Weblink:
Download reference:

Albert, A.M., Ricanek Jr., K., and Patterson, E. (2007). A review of the literature on the aging adult skull and face: Implications for forensic science research and applications. Forensic Science International 172(1): 1–9.

Weblink:
Download reference:

Bell, M., Charles‐Edwards, E., Ueffing, P., Stillwell, J., Kupiszewski, M., and Kupiszewska, D. (2015). Internal migration and development: Comparing migration intensities around the world. Population and Development Review 41(1): 33–58.

Weblink:
Download reference:

Bendavid, E., Seligman, B., and Kubo, J. (2011). Comparative analysis of old-age mortality estimations in Africa. PLoS One 6(10): e26607.

Weblink:
Download reference:

Bocquier, P., Sankoh, O., and Byass, P. (2017). Are health and demographic surveillance system estimates sufficiently generalizable? Global Health Action 10(1): 1356621.

Weblink:
Download reference:

Boerma, T. (2010). Foreword: The INDEPTH WHO–SAGE collaboration: Coming of age. Global Health Action 3.

Weblink:
Download reference:

Bühlmann, P., Drineas, P., Kane, M., and van der Laan, M. (2016). Handbook of big data. Boca Raton: CRC Press.

Download reference:

Burges, C.J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2): 121–167.

Weblink:
Download reference:

Caldwell, J.C. (1966). Study of age misstatement among young children in Ghana. Demography 3(2): 477–490.

Weblink:
Download reference:

Caldwell, J.C. and Igun, A.A. (1971). An experiment with census-type age enumeration in Nigeria. Population Studies 25(2): 287–302.

Weblink:
Download reference:

Cameriere, R., Pacifici, A., Pacifici, L., Polimeni, A., Federici, F., Cingolani, M., and Ferrante, L. (2016). Age estimation in children by measurement of open apices in teeth with Bayesian calibration approach. Forensic Science International 258: 50–54.

Weblink:
Download reference:

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3): 27.

Weblink:
Download reference:

Chatterji, S. (2013). World Health Organisation’s (WHO) Study on Global Ageing and Adult Health (SAGE). BMC Proceedings 7(S4): S1.

Weblink:
Download reference:

Chen, C., Dantcheva, A., and Ross, A. (2014). Impact of facial cosmetics on automatic gender and age estimation algorithms. Paper presented at the 9th International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal, January 5–8, 2014.

Download reference:

Choi, S.E., Lee, Y.J., Lee, S.J., Park, K.R., and Kim, J. (2011). Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognition 44(6): 1262–1281.

Weblink:
Download reference:

Cootes, T. and Lanitis, A. (2008). The FG-NET aging database [electronic resource].

Download reference:

Corsi, D.J., Neuman, M., Finlay, J.E., and Subramanian, S.V. (2012). Demographic and health surveys: A profile. International Journal of Epidemiology 41(6): 1602–1613.

Weblink:
Download reference:

Delaunay, V., Douillot, L., Diallo, A., Dione, D., Trape, J.F., Medianikov, O., Raoult, D., and Sokhna, C. (2013). Profile: The Niakhar Health and Demographic Surveillance System. International Journal of Epidemiology 42(4): 1002–1011.

Weblink:
Download reference:

Dibeklioğlu, H., Alnajar, F., Salah, A.A., and Gevers, T. (2015). Combining facial dynamics with appearance for age estimation. IEEE Transactions on Image Processing 24(6): 1928–1943.

Weblink:
Download reference:

Eidinger, E., Enbar, R., and Hassner, T. (2014). Age and gender estimation of unfiltered faces. IEEE Transactions on Information Forensics and Security 9(12): 2170–2179.

Weblink:
Download reference:

Ekstrom, A.M., Clark, J., Byass, P., Lopez, A., de Savigny, D., Moyer, C.A., Campbell, H., Gage, A.J., Bocquier, P., AbouZahr, C., and Sankoh, O. (2016). INDEPTH network: Contributing to the data revolution. Lancet Diabetes and Endocrinology 4(2): 97.

Weblink:
Download reference:

Elhamifar, E. and Vidal, R. (2011). Robust classification using structured sparse representation. Paper presented at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, United States, June 20–25, 2011.

Weblink:
Download reference:

Elo, I.T., Mykyta, L., Sebastiani, P., Christensen, K., Glynn, N.W., and Perls, T. (2013). Age validation in the long life family study through a linkage to early-life census records. Journals of Gerontology Series B: Psychological Sciences and Social Sciences 68(4): 580–585.

Weblink:
Download reference:

Elo, I.T. and Preston, S.H. (1994). Estimating African-American mortality from inaccurate data. Demography 31(3): 427–458.

Weblink:
Download reference:

Elo, I.T., Turra, C.M., Kestenbaum, B., and Ferguson, B.R. (2004). Mortality among elderly Hispanics in the United States: Past evidence and new results. Demography 41(1): 109–128.

Weblink:
Download reference:

Eloundou-Enyegue, P. and Davanzo, J. (2003). Economic downturns and schooling inequality, Cameroon, 1987–95. Population Studies 57(2): 183–197.

Weblink:
Download reference:

Ewbank, D.C. (1981). Age misreporting and age-selective underenumeration: Sources, patterns and consequences for demographic analysis. Washington, D.C.: National Academy Press.

Download reference:

Fu, Y., Guo, G., and Huang, T.S. (2010). Age synthesis and estimation via faces: A survey. IEEE transactions on Pattern Analysis and Machine Intelligence 32(11): 1955–1976.

Weblink:
Download reference:

Fu, Y. and Huang, T.S. (2008). Human age estimation with regression on discriminative aging manifold. IEEE Transactions on Multimedia 10(4): 578–584.

Weblink:
Download reference:

GBD SDG Collaborators (2017). Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: An analysis from the Global Burden of Disease Study 2016. Lancet 390(10100): 1423–1459.

Weblink:
Download reference:

Geng, X., Yin, C., and Zhou, Z.-H. (2013). Facial age estimation by learning from label distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(10): 2401–2412.

Weblink:
Download reference:

Geng, X., Zhou, Z.-H., and Smith-Miles, K. (2007). Automatic age estimation based on facial aging patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12): 2234–2240.

Weblink:
Download reference:

Geng, X., Zhou, Z.-H., Zhang, Y., Li, G., and Dai, H. (2006). Learning from facial aging patterns for automatic age estimation. Paper presented at the 14th Annual ACM International Conference on Multimedia, Santa Barbara, United States, October 23–27, 2006.

Weblink:
Download reference:

George, P.A. and Hole, G.J. (2000). The role of spatial and surface cues in the age-processing of unfamiliar faces. Visual Cognition 7(4): 485–509.

Weblink:
Download reference:

Gessert, C.E., Elliott, B.A., and Haller, I.V. (2002). Dying of old age: An examination of death certificates of Minnesota centenarians. Journal of the American Geriatric Society 50(9): 1561–1565.

Weblink:
Download reference:

Guo, G., Fu, Y., Dyer, C.R., and Huang, T.S. (2008). Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Transactions on Image Processing 17(7): 1178–1188.

Weblink:
Download reference:

Guo, G., Mu, G., Fu, Y., Dyer, C., and Huang, T. (2009). A study on automatic age estimation using a large database. Paper presented at the 2009 IEEE 12th International Conference on Computer Vision (CVPR), Kyoto, Japan, September 29–October 2, 2009.

Download reference:

Guo, G. and Zhang, C. (2014). A study on cross-population age estimation. Paper presented at the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, United States, June 23–28, 2014.

Weblink:
Download reference:

Han, H., Otto, C., and Jain, A.K. (2013). Age estimation from face images: Human vs. machine performance. Paper presented at the 2013 International Conference on Biometrics (ICB), Madrid, Spain, June 4–7, 2013.

Weblink:
Download reference:

Hastie, T., Tibshirani, R., and Friedman, J. (2009). Overview of supervised learning. In: Hastie, T., Tibshirani, R., and Friedman, J. (eds.). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer: 9–41.

Weblink:
Download reference:

Herbst, K., Juvekar, S., Bhattacharjee, T., Bangha, M., Patharia, N., Tei, T., Gilbert, B., and Sankoh, O. (2015). The INDEPTH data repository: An international resource for longitudinal population and health data from health and demographic surveillance systems. Journal of Empirical Research on Human Research Ethics 10(3): 324–333.

Weblink:
Download reference:

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2003). A practical guide to support vector classification. Taipei City: Department of Computer Science, National Taiwan University (Technical report).

Download reference:

Kocabey, E., Camurcu, M., Ofli, F., Aytar, Y., Marin, J., Torralba, A., and Weber, I. (2017). Face-to-BMI: Using computer vision to infer body mass index on social media. arXiv preprint arXiv:1703.03156.

Download reference:

Kvaal, S.I., Kolltveit, K.M., Thomsen, I.O., and Solheim, T. (1995). Age estimation of adults from dental radiographs. Forensic Science International 74(3): 175–185.

Weblink:
Download reference:

Lanitis, A., Draganova, C., and Christodoulou, C. (2004). Comparing different classifiers for automatic age estimation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(1): 621–628.

Weblink:
Download reference:

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521(7553): 436–444.

Weblink:
Download reference:

Li, C., Liu, Q., Liu, J., and Lu, H. (2012). Learning ordinal discriminative features for age estimation. Paper presented at the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, United States, June 16–21, 2012.

Download reference:

Luo, W., Nguyen, T., Nichols, M., Tran, T., Rana, S., Gupta, S., Phung, D., Venkatesh, S., and Allender, S. (2015). Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset. PLoS One 10(5): e0125602.

Weblink:
Download reference:

Meekers, D. and van Rossem, R. (2005). Explaining inconsistencies between data on condom use and condom sales. BMC Health Services Research 5(1): 5.

Weblink:
Download reference:

Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. (2013). Machine learning: An artificial intelligence approach. Berlin: Springer Science & Business Media.

Download reference:

Mikkelsen, L., Phillips, D.E., AbouZahr, C., Setel, P.W., de Savigny, D., Lozano, R., and Lopez, A.D. (2015). A global assessment of civil registration and vital statistics systems: monitoring data quality and progress. Lancet 386(10001): 1395–1406.

Weblink:
Download reference:

Mitchell, T., Buchanan, B., de Jong, G., Dietterich, T., Rosenbloom, P., and Waibel, A. (1990). Machine learning. Annual Review of Computer Science 4(417–433).

Weblink:
Download reference:

Mullainathan, S. and Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives 31(2): 87–106.

Weblink:
Download reference:

Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E.C., Biryukov, S., Abbafati, C., and Abera, S.F. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 384(9945): 766–781.

Weblink:
Download reference:

Notkola, V., Timæus, I.M., and Siiskonen, H. (2004). Impact on mortality of the AIDS epidemic in northern Namibia assessed using parish registers. AIDS 18(7): 1061–1065.

Weblink:
Download reference:

Notkola, V., Timæus, I.M., and Siiskonen, H. (2000). Mortality transition in the Ovamboland region of Namibia, 1930–1990. Population Studies 54(2): 153–167.

Weblink:
Download reference:

Palloni, A., Pinto, G., and Beltrán-Sánchez, H. (2014). Latin American Mortality Database (LAMBdA) [electronic resource]. Madison: Center of Demography and Health of Aging, University of Wisconsin–Madison.

Weblink:
Download reference:

Panis, G. and Lanitis, A. (2014). An overview of research activities in facial age estimation using the FG-NET aging database. Paper presented at the European Conference on Computer Vision, Zurich, Switzerland, September 6–12, 2014.

Download reference:

Parate, A., Chiu, M.-C., Chadowitz, C., Ganesan, D., and Kalogerakis, E. (2014). Risq: Recognizing smoking gestures with inertial sensors on a wristband. Paper presented at the 12th Annual International Conference on Mobile systems, applications, and services, Bretton Woods, United States, June 16–19, 2014.

Weblink:
Download reference:

Parkhi, O.M., Vedaldi, A., and Zisserman, A. (2015). Deep face recognition. Paper presented at the British Machine Vision Conference, Swansea, United Kingdom, September 7–10, 2015.

Weblink:
Download reference:

Paudel, D., Ahmed, M., Pradhan, A., and Dangol, R.L. (2013). Successful use of tablet personal computers and wireless technologies for the 2011 Nepal Demographic and Health Survey. Global Health: Science and Practice 1(2): 277–284.

Weblink:
Download reference:

Pison, G. (1980). Calculer l’âge sans le demander: Méthode d’estimation de l’âge et structure par âge des Peul Bandé [Calculating age without asking for it: Method of estimating the age and age-structure of the Peul-Bande]. Population 35(4–5): 861–892.

Weblink:
Download reference:

Preston, S.H. and Elo, I.T. (1999). Effects of age misreporting on mortality estimates at older ages. Population Studies 53(2): 165–177.

Weblink:
Download reference:

Preston, S.H., Elo, I.T., Rosenwaike, I., and Hill, M. (1996). African-American mortality at older ages: Results of a matching study. Demography 33(2): 193–209.

Weblink:
Download reference:

Pullum, T.W. (2006). An assessment of age and date reporting in the DHS Surveys 1985–2003. Calverton: Macro International (DHS Methodological Report No. 5).

Download reference:

Pullum, T.W. and Becker, S. (2014). Evidence of omission and displacement in DHS birth histories. Rockville: ICF (DHS Methodological Report No. 11).

Download reference:

Pullum, T.W. and Staveteig, S. (2017). An assessment of the quality and consistency of age and date reporting in DHS Surveys, 2000–2015. Rockville: ICF (DHS Methodological Report No. 19).

Download reference:

Qawaqneh, Z., Mallouh, A.A., and Barkana, B.D. (2017). Deep convolutional neural network for age estimation based on VGG-face model. arXiv preprint arXiv:1709.01664.

Download reference:

Randall, S. and Coast, E. (2016). The quality of demographic data on older Africans. Demographic Research 34(5): 143–174.

Weblink:
Download reference:

Ranjan, R., Sankaranarayanan, S., Castillo, C.D., and Chellappa, R. (2017). An all-in-one convolutional neural network for face analysis. Paper presented at the 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), Washington, D.C., United States, May 30–June 3, 2017.

Weblink:
Download reference:

Rasmussen, C.E. (2004). Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., and Rätsch, G. (eds.). Advanced lectures on machine learning. Berlin: Springer: 63–71.

Weblink:
Download reference:

Ren, F., Li, C., Xi, H., Wen, Y., and Huang, K. (2009). Estimation of human age according to telomere shortening in peripheral blood leukocytes of Tibetan. American Journal of Forensic Medicine and Pathology 30(3): 252–255.

Weblink:
Download reference:

Ricanek Jr., K. and Tesafaye, T. (2006). Morph: A longitudinal image database of normal adult age-progression. Paper presented at the 7th International Conference on Automatic Face and Gesture Recognition, Southampton, United Kingdom, April 10–12, 2006.

Weblink:
Download reference:

Ritz-Timme, S., Cattaneo, C., Collins, M., Waite, E., Schütz, H., Kaatsch, H.-J., and Borrman, H. (2000). Age estimation: the state of the art in relation to the specific demands of forensic practice. International Journal of Legal Medicine 113(3): 129–136.

Weblink:
Download reference:

Rosenwaike, I. and Stone, L.F. (2003). Verification of the ages of supercentenarians in the United States: Results of a matching study. Demography 40(4): 727–739.

Weblink:
Download reference:

Sankoh, O. and INDEPTH Network (2015). CHESS: An innovative concept for a new generation of population surveillance. Lancet Global Health 3(12): e742.

Weblink:
Download reference:

Senthilkumar, R. and Gnanamurthy, R. (2017). Performance improvement in classification rate of appearance based statistical face recognition methods using SVM classifier. Paper presented at the 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, January 6–7, 2017.

Weblink:
Download reference:

Serinelli, S., Panebianco, V., Martino, M., Battisti, S., Rodacki, K., Marinelli, E., Zaccagna, F., Semelka, R.C., and Tomei, E. (2015). Accuracy of MRI skeletal age estimation for subjects 12–19: Potential use for subjects of unknown age. International Journal of Legal Medicine 129(3): 609–617.

Weblink:
Download reference:

Sun, Y., Wang, X., and Tang, X. (2013). Deep convolutional network cascade for facial point detection. Paper presented at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, United States, June 25–27, 2013.

Weblink:
Download reference:

Suo, J., Wu, T., Zhu, S., Shan, S., Chen, X., and Gao, W. (2008). Design sparse features for age estimation using hierarchical face model. Paper presented at the 8th IEEE International Conference on Automatic Face and Gesture Recognition, Amsterdam, Netherlands, September 17–19, 2008.

Weblink:
Download reference:

Suykens, J.A. and Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters 9(3): 293–300.

Weblink:
Download reference:

Thukral, P., Mitra, K., and Chellappa, R. (2012). A hierarchical approach for human age estimation. Paper presented at the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, March 25–30, 2012.

Weblink:
Download reference:

Tolba, A., El-Baz, A., and El-Harby, A. (2006). Face recognition: A literature review. International Journal of Signal Processing 2(2): 88–103.

Download reference:

Tsuji, A., Ishiko, A., and Ikeda, N. (2005). Telomere shortening and age estimation in forensic medicine. Gerontology 51(6): 416.

Weblink:
Download reference:

Tsuji, A., Ishiko, A., Takasaki, T., and Ikeda, N. (2002). Estimating age of humans based on telomere shortening. Forensic Science International 126(3): 197–199.

Weblink:
Download reference:

Turra, C.M. and Elo, I.T. (2008). The impact of salmon bias on the Hispanic mortality advantage: New evidence from social security data. Population Research and Policy Review 27(5): 515–530.

Weblink:
Download reference:

Walters, S. (2016). Counting souls: Towards an historical demography of Africa. Demographic Research 34(3): 63–108.

Weblink:
Download reference:

Weber, M., Welling, M., and Perona, P. (2000). Unsupervised learning of models for recognition. Paper presented at the 6th European Conference on Computer Vision, ECCV 2000, Dublin, Ireland, June 26–July 1, 2000.

Weblink:
Download reference:

Yildiz, D., Munson, J., Vitali, A., Tinati, R., and Holland, J.A. (2017). Using Twitter data for demographic research. Demographic Research 37(46): 1477–1514.

Weblink:
Download reference:

Zheng, X., Wang, J., Shangguan, L., Zhou, Z., and Liu, Y. (2016). Smokey: Ubiquitous smoking detection with commercial WiFi infrastructures. Paper presented at the 35th Annual IEEE International Conference on Computer Communications, INFOCOM 2016, San Francisco, United States, April 10–15, 2015.

Weblink:
Download reference:

Zhu, K., Gong, D., Li, Z., and Tang, X. (2014). Orthogonal Gaussian process for automatic age estimation. Paper presented at the ACM International Conference on Multimedia, Orlando, United States, November 3–7, 2014.

Weblink:
Download reference:

Zubakov, D., Liu, F., Kokmeijer, I., Choi, Y., van Meurs, J.B.J., van Ijcken, W.F.J., Uitterlinden, A.G., Hofman, A., Broer, L., van Duijn, C.M., Lewin, J., and Kayser, M. (2016). Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length. Forensic Science International Genetics 24: 33–43.

Weblink:
Download reference:

Back to the article