Volume 37 - Article 46 | Pages 1477–1514
Using Twitter data for demographic research
By Dilek Yildiz, Jo Munson, Agnese Vitali, Ramine Tinati, Jennifer A. Holland
References
Agresti, A. (2013). Categorical data analysis. New Jersey: John Wiley and Sons, Inc.
An, J. and Weber, I. (2016). #greysanatomy vs.#yankees: Demographics and hashtag use on Twitter. Paper presented at the Tenth International AAAI Conference on Web and Social Media, Cologne, Germany, May 17–20, 2016.
Bishop, Y.M.M., Fienberg, S.E., and Holland, P.W. (1975). Discrete multivariate analysis: Theory and practice. Cambridge: MIT Press.
Cheng, J., Teevan, J., and Bernstein, M.S. (2015). Measuring crowdsourcing effort with error-time curves. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Korea, April 18–23, 2015. Seoul, Korea: ACM: 1365–1374.
Cheng, J., Teevan, J., Iqbal, S.T., and Bernstein, M.S. (2015). Break it down: A comparison of macro- and microtasks. In: Proceedings of at the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Korea, April 18–23, 2015. New York: ACM: 4061–4064.
Costa, E.P., Lorena, A.C., Carvalho, A.C.P.L.F., and Freitas, A.A. (2007). A review of performance evaluation measures for hierarchical classifiers. In: Drummond, C., Elazmeh, W., N., Japkowicz, and Macskassy, S.A. (eds.). Evaluation methods for machine learning II: Papers from the AAAI-2007 Workshop. Palo Alto: AAAI Press: 1–6.
Fan, H., Yang, M., Cao, Z., Jiang, Y., and Yin, Q. (2014). Learning compact face representation. In: Proceedings of the 22nd ACM international conference on Multimedia, Orlando, Florida, November 3–7, 2014. New York: ACM: 933–936.
Housley, W., Williams, M., Williams, M., and Edwards, A. (2013). Special issue Computational Social Science: Research Strategies, Design, and Methods: Introduction. International Journal of Social Research Methodology 16(3): 173–175.
Ipeirotis, P.G. (2010). Demographics of mechanical turk. New York: New York University (NYU working paper No. CEDER-10–01).
Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, J., Lease, M., and Horton, J. (2013). The future of crowd work. In: Proceedings of the 2013 conference on Computer supported cooperative work, San Antonio, Texas, February 23–27, 2013. New York: ACM: 1301–1318.
McCormick, T.H., Lee, H., Cesare, N., Shojaie, A., and Spiro, E.S. (2015). Using Twitter for demographic and social science research: Tools for data collection and processing. Sociological Methods and Research 46(3): 390–421.
McCorriston, J., Jurgens, D., and Ruths, D. (2015). Organizations are users too: Characterizing and detecting the presence of organizations on Twitter. In: Proceedings of the Ninth International AAAI Conference on Web and Social Media, Oxford, UK, May 26–29, 2015. Palo Alto: AAAI Press: 650–653.
Megvii Inc. (2013). Face++ research toolkit [electronic resource].
Messias, J., Vikatos, P., and Benevenuto, F. (2017). White, man, and highly followed: Gender and race inequalities in Twitter. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, Leipzig, Germany, August 23–26, 2017. New York: ACM: 266–274.
Mislove, A., Lehmann, S., Ahn, Y.Y., Onnela, J.P., and Rosenquist, J.N. (2011). Understanding the demographics of Twitter users. In: Proceedings of the Fifth International AAAI Conference on Web and Social Media, Barcelona, Spain, July 17–21, 2011. Palo Alto: AAAI Press: 554–557.
Office for National Statistics (ONS) (2017). Annual mid-year population estimates QMI [electronic resource].
Office for National Statistics (ONS) (2015). Annual mid-year population estimates: 2014 [electronic resource].
Office for National Statistics (ONS) (2016). Information paper: Annual mid-year population estimates: 2016 [electronic resource].
Perrin, A. (2015). Social networking usage 2005–2015 [electronic resource].
Raymer, J., Abel, G.J., and Smith, P.W.F. (2007). Combining census and registration data to estimate detailed elderly migration flows in England and Wales. Journal of the Royal Statistical Society. Series A 170(4): 891–908.
Savage, M. and Burrows, R. (2007). The coming crisis of empirical sociology. Sociology 41(5): 885–899.
Sloan, L., Morgan, J., Burnap, P., and Williams, M. (2015). Who tweets? Deriving the demographic characteristics of age, occupation and social class from Twitter user meta-data. PloS ONE 10(3): e0115545.
Sloan, L., Morgan, J., Housley, W., Williams, M., Edwards, A., Burnap, P., and Rana, O. (2013). Knowing the tweeters: Deriving sociologically relevant demographics from Twitter. Sociological Research Online 18(3): 7.
Smith, C. (2016). How many people use the top social media? Digital market ramblings [electronic resource].
Smith, P.W.F., Raymer, J., and Guilietti, C. (2010). Combining available migration data in England to study economic activity flows over time. Journal of the Royal Statistical Society, Series A 173(4): 733–753.
Van Pelt, C. and Sorokin, A. (2012). Designing a scalable crowdsourcing platform. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. New York: ACM: 765–766.
Vikatos, P., Messias, J., Miranda, M., and Benevenuto, F. (2017). Linguistic diversities of demographic groups in Twitter. In: Proceedings of the 28th ACM Conference on Hypertext and Social Media, Prague, Czech Republic, July 4–7, 2017. New York: ACM: 275–284.
Willekens, F. (1983). Log-linear modelling of spatial interaction. Papers of the Regional Science Association 52(1): 187–205.
Willekens, F. (1999). Modelling approaches to the indirect estimation of migration flows: From entropy to EM. Mathematical Population Studies: An International Journal of Mathematical Demography 7(3): 239–278.
Yildiz, D. and Smith, P.W.F. (2015). Models for combining aggregate-level administrative data in the absence of a traditional census. Journal of Official Statistics 31(3): 431–451.
Zagheni, E., Garimella, V.R.K., Weber, I., and State, B. (2014). Inferring international and internal migration patterns from twitter data. In: WWW ’14 Companion Proceedings of the 23rd Internationa Conference on World Wide Web, Seoul, Korea, April 7–11, 2014. New York: ACM: 439–444.
Zagheni, E. and Weber, I. (2015). Demographic research with nonrepresentative internet data. International Journal of Manpower 36(1): 13–25.
Zhou, E., Fan, H., Cao, Z., Jiang, Y., and Yin, Q. (2013). Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, Australia, December 2–8, 2013. New York: IEEE: 386–391.