Volume 33 - Article 21 | Pages 589–610  

Taylor's power law in human mortality

By Christina Bohk-Ewald, Roland Rau, Joel E. Cohen

References

Anderson, R.M. and May, R.M. (1988). Epidemiological parameters of HIV transmission. Nature 333: 514–519.

Weblink:
Download reference:

Bohk, C. and Rau, R. (2014). Probabilistic mortality forecasting with varying age-specific survival improvements. arXiv:1311.5380v2 [stat.AP].

Download reference:

Bronikowski, A.M., Altmann, J., Brockman, D.K., Cords, M., Fedigan, L.M., Pusey, A., Stoinski, T., Morris, W.F., Strier, K.B., and Alberts, S.C. (2011). Aging in the natural world: comparative data reveal similar mortality patterns across primates. Science 331: 1325–1328.

Weblink:
Download reference:

Burger, O., Baudisch, A., and Vaupel, J.W. (2012). Human mortality improvement in evolutionary context. Proceedings of the National Academy of Scieneces 109(44): 18210–18214.

Weblink:
Download reference:

Cohen, J.E., Xu, M., and Brunborg, H. (2013). Taylor’s law applies to spatial variation in a human population. Genus 69(1): 25–60.

Download reference:

Engelman, M., Caswell, H., and Agree, E.M. (2014). Why do lifespan variability trends for the young and old diverge? A perturbation analysis. Demographic Research 30(48): 1367–1396.

Weblink:
Download reference:

Gompertz, B. (1825). On the nature of the function of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London 115: 513–583.

Weblink:
Download reference:

Haberman, S. and Renshaw, A.E. (2012). Parametric mortality improvement rate modelling and projecting. Insurance: Mathematics and Economics 50: 309–333.

Weblink:
Download reference:

Jones, O.R., Scheuerlein, A., Salguero-Gomez, R., Camarda, C.G., Schaible, R., Casper, B.B., Dahlgren, J.P., Ehrlen, J., Garcia, M.B., Menges, E.S., Quintana-Ascencio, P.F., Caswell, H., Baudisch, A., and Vaupel, J.W. (2014). Diversity of ageing across the tree of life. Nature 505(169–173).

Weblink:
Download reference:

Kannisto, V., Lauritsen, J., Thatcher, A.R., and Vaupel, J.W. (1994). Reductions in mortality at advanced ages: several decades pf evidence from 27 countries. Population and Development Review 20(4): 793−810.

Weblink:
Download reference:

Kendal, W.S. (2004a). A scale invariant clustering of genes on human chromosome 7. BMC Evolutionary Biology 4(3).

Download reference:

Kendal, W.S. (2004b). Taylor’s ecological power law as a consequence of scale invariant exponential dispersion models. Ecological Complexity 1: 193–209.

Weblink:
Download reference:

Kilpatrick, A.M. and Ives, A.R. (2003). Species interactions can explain Taylor’s power law for ecological time series. Nature 422: 65–68.

Weblink:
Download reference:

Lee, R.D. and Carter, L.R. (1992). Modeling and forecasting U.S. mortality. Journal of the American Statistical Association 87(419): 659–671.

Weblink:
Download reference:

Mitchell, D., Brockett, P., Mendoza-Arriage, R., and Muthuraman, K. (2013). Modeling and forecasting mortality rates. Insurance: Mathematics and Economics 52: 275–285.

Weblink:
Download reference:

Oeppen, J. and Vaupel, J.W. (2002). Broken limits to life expectancy. Science 296: 1029–1031.

Weblink:
Download reference:

R, Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Weblink:
Download reference:

Renshaw, A.E. and Haberman, S. (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics 38: 556–570.

Weblink:
Download reference:

Renshaw, A.E. and Haberman, S. (2003). Lee-Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics 33: 255–272.

Weblink:
Download reference:

Rhodes, C.J. and Anderson, R.M. (1996). Power laws governing epidemics in isolated populations. Nature 381: 600–602.

Weblink:
Download reference:

Siler, W. (1983). Parameters of mortality in human populations with widely varying life spans. Statistics in Medicine 2: 373–380.

Weblink:
Download reference:

Taylor, L.R. (1961). Aggregation, variance and the mean. Nature 189: 732–735.

Weblink:
Download reference:

Thiele, T.N. (1871). On a mathematical formula to express the rate of mortality throughout the whole of life. Journal of the Institute of Actuaries and Assurance Magazine 16(5): 313–329.

Download reference:

Tuljapurkar, S., Li, N., and Boe, C. (2000). A universal pattern of mortality decline in the G7 countries. Nature 405: 789–792.

Weblink:
Download reference:

University of California, Berkeley (USA) and Max Planck Institute for Demographic Research, Rostock, (Germany) (2014). Human Mortality Database [electronic resource].

Weblink:
Download reference:

Vallin, J. and Meslé, F. (2010). Will life expectancy increase indefinitely by three month every year? Population & Societies 473: 1–4.

Download reference:

van Raalte, A.A. and Caswell, H. (2013). Perturbation analysis of indices of lifespan variability. Demography 50(5): 1615–1640.

Weblink:
Download reference:

Vaupel, J.W. and Canudas Romo, V. (2003). Decomposing change in life expectancy: a bouquet of formulas in honour of Nathan Keyfitz’s 90th birthday. Demography 40(2): 201–216.

Weblink:
Download reference:

Vaupel, J.W., Zhang, Z., and van Raalte, A.A. (2011). Life expectancy and disparity: an international comparison of life table data. BMJ Open 1(1): 1–6.

Weblink:
Download reference:

Wilmoth, J.R. and Horiuchi, S. (1999). Rectangularization revisited: variability of age at death within human populations. Demography 36(4): 475–495.

Weblink:
Download reference:

Back to the article