Volume 29 - Article 27 | Pages 729–766
Reforging the Wedding Ring: Exploring a Semi-Artificial Model of Population for the United Kingdom with Gaussian process emulators
By Jakub Bijak, Jason D. Hilton, Eric Silverman, Viet Dung Cao
References
Aparicio Diaz, B., Fent, T., Prskawetz, A., and Bernardi, L. (2011). Transition to parenthood: The role of social interaction and endogenous networks. Demography 48(2): 559–579.
Axtell, R.L., Epstein, J.M., Dean, J.S., Gumerman, G.J., Swedlund, A.C., Harburger, J., Chakravarty, S., Hammond, R., Parker, J., and M., Parker (2002). Population growth and collapse in a Multi-Agent Model of the Kayenta Anasazi in Long House Valley. Proceedings of the National Academy of Sciencesof the USA 99(Suppl. 3): 7275–7279.
Benenson, I., Omer, I., and Hatna, E. (2003). Agent-Based modeling of householders’ migration behaviour and its consequences. In: Billari, F. and Prskawetz, A. (eds.). Agent–Based Computational Demography: Using Simulation to Improve Our Understanding of Demographic Behaviour. Heidelberg: Physica Verlag: 97–115.
Bernardi, L. (2003). Channels of social influence on reproduction. Population Research and Policy Review 22(5-6): 527–555.
Bernardi, L., Keim, S., and von der Lippe, H. (2007). Social influences on fertility: A comparative mixed methods study in Eastern and Western Germany. Journal of Mixed Methods Research 1(1): 23–47.
Billari, F., Aparicio Diaz, B., Fent, T., and Prskawetz, A. (2007). The “Wedding–Ring”: An agent–based marriage model based on social interaction. Demographic Research 17(3): 59–82.
Billari, F., Fent, T., Prskawetz, A., and Scheffran, J. (2006). Agent–Based computational modelling: Applications in demography, social, economic and environmental sciences. Heidelberg: Physica Verlag.
Billari, F. and Prskawetz, A. (2003). Agent–Based computational demography: Using simulation to improve our understanding of demographic behaviour. Heidelberg: Physica Verlag.
Billari, F.C. (2006). Bridging the gap between micro-demography and macro-demography. In: Caselli, G., Vallin, J., and Wunsch, G. (eds.). Demography: analysis and synthesis, Vol 4. New York: Academic Press / Elsevier: 695–707.
Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the USA 99(Suppl. 3): 7280–7287.
Booth, H., Maindonald, J., and Smith, L. (2002). Applying Lee-Carter under conditions of variable mortality decline. Population Studies 56(3): 325–336.
Bühler, Ch. and Frątczak, E. (2007). Learning from others and receiving support: The impact of personal networks on fertility intentions in Poland. European Societies 9(3): 359–382.
Courgeau, D. (2012). Probability and social science: Methodological relationships between the two approaches. Methodos Series, vol. 10. Dordrecht: Springer.
Dannefer, D. (2003). Cumulative advantage/disadvantage and the life course: Cross-fertilizing age and social science theory. Journal of Gerontology (Social Sciences) 58(16): S327–S337.
Entwisle, B. (2007). Putting people into place. Demography 44(4): 687–703.
Epstein, J.M. (2008). Why model? Journal of Artificial Societies and Social Simulation 11(4): 12.
Epstein, J.M. and Axtell, R.L. (1996). Growing artificial societies: Social science from the bottom up. Cambridge, MA: MIT Press.
Eurostat (2011). Eurostat Statistics Database; Domain Population and Social Conditions [electronic resource]. Luxembourg: Eurostat. (data retrieved on 27/10/2011).
Geard, N., McCaw, J.M., Dorin, A., Korb, K.B., and McVernon, J. (2013). Synthetic population dynamics: A model of household demography. Journal of Artificial Societies and Social Simulation 16(1): 8.
Gilbert, N. and Tierna, P. (2000). How to build and use agent-based models in social science. Mind and Society 1(1): 57–72.
Gilbert, N. and Troitzsch, K.G. (2005). Simulation for the Social Scientist. 2nd ed. Maidenhead: Open University Press.
Hammel, E.A., McDaniel, C.K., and Wachter, K.W. (1979). Demographic consequences of incest tabus: A microsimulation analysis. Science 205(4410): 972–977.
Heiland, F. (2003). The collapse of the Berlin Wall: Simulating state-level East to West German migration patterns. In: Billari, F. and Prskawetz, A. (eds.). Agent–Based computational demography: Using simulation to improve our understanding of demographic behavior. Heidelberg: Physica-Verlag: 73–96.
Hills, T. and Todd, P. (2008). Population heterogeneity and individual differences in an assortative Agent-Based Marriage and Divorce Model (MADAM) using search with relaxing expectations. Journal of Artificial Societies and Social Simulation 11(4): 5.
Human Mortality Database (2011). Human Mortality Database [electronic resource]. Berkeley, CA, Rostock: University of California, Berkeley, Max Planck Institute for Demographic Research. (data retrieved on 26/07/2011).
Hutchins, E. and Hazelhurst, B. (1995). How to invent a lexicon: the development of shared symbols in interaction. In: Gilbert, N. and Conte, R. (eds.). Artificial societies: The computer simulation of social life. London: University College London Press: 157–189.
Hyndman, R. (2011). forecast: Forecasting functions for time series [electronic resource]. Melbourne: Monash University. (retrieved on 06/09/2011).
Keilman, N. and Pham, D.Q. (2006). Prediction intervals for Lee-Carter-based mortality forecasts. Paper presented at the European Population Conference, Liverpool, UK, 21–24 June 2006.
Kennedy, M. (2004). Description of the Gaussian process model used in GEM-SA. Software manual [electronic resource]. Sheffield: Centre for Terrestrial Carbon Dynamics, University of Sheffield. (retrieved on 23/05/2012).
Kennedy, M.C. and O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society, Series B 63(3): 425–464.
Kniveton, D., Smith, Ch., and Wood, S. (2011). Agent-based model simulations of future changes in migration flows for Burkina Faso. Global Environmental Change 21(S1): S34–S40.
Langton, C.G. (1995). Artificial life: An overview. Cambridge, MA: MIT Press.
Lee, R.D. and Carter, L.R. (1992). Modeling and forecasting U.S. mortality. Journal of the American Statistical Association 87(419): 659–671.
Lee, R.D. and Tuljapurkar, S. (1994). Stochastic population forecasts for the United States: Beyond high, medium, and low. Journal of the American Statistical Association 89(428): 1175–1189.
Murphy, M. (2003). Bringing behavior back into micro-simulation: Feedback mechanisms in demographic models. In: Billari, F. and Prskawetz, A. (eds.). Agent–Based computational demography: Using simulation to improve our understanding of demographic behavior. Heidelberg: Physica-Verlag: 159–174.
Murphy, M. (2004). Tracing very long-term kinship networks using SOCSIM. Demographic Research 10(7): 171–196.
O’Hagan, A. (2006). Bayesian analysis of computer code outputs: A tutorial. Reliability Engineering and System Safety 91(10–11): 1290–1300.
Oakley, J. and O’Hagan, A. (2002). Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika 89(4): 769–784.
Oakley, J. and O’Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: A Bayesian approach. Journal of the Royal Statistical Society, Series B 66(3): 751–769.
ONS (2013). Annual Mid-year Population Estimates, 2011 and 2012 [electronic resource]. Titchfield: Office for National Statistics. (retrieved on 15/08/2013).
ONS (1998). Birth Statistics. Series FM1, No. 27 [electronic resource]. London: Office for National Statistics. (retrieved on 15/11/2011).
ONS (2012). Census: Key Statistics for England and Wales, March 2011 [electronic resource]. Titchfield: Office for National Statistics. (retrieved on 15/08/2013).
ONS (2012). Chapter 3: Fertility, 2010-based NPP Reference Volume [electronic resource]. Titchfield: Office for National Statistics. (retrieved on 15/08/2013).
ONS (2013). Long-term Migration into and out of the United Kingdom: Timeline [electronic resource]. Titchfield: Office for National Statistics. (retrieved on 15/08/2013).
ONS (2011). Marital Status Population Estimates Excluding Marriages Abroad, Mid 2010 [electronic resource]. Titchfield: Office for National Statistics. (retrieved on 15/08/2013).
ONS (2012). Table J1-1, Natural change variant. UK summary, 2010-based [electronic resource]. Titchfield: Office for National Statistics. (retrieved on 15/08/2013).
Orcutt, G., S., Caldwell, and Wertheimer II, R. (1976). Policy exploration through microanalytic simulation. Washington DC: Urban Institute.
Orcutt, G.H. (1957). A new type of socio-economic system. The Review of Economics and Statistics 39(2): 116–123.
Reeves, J.H. (1987). Projection of Number of Kin. In: Bongaarts, J., Burch, T.K., and Wachter, K.W. (eds.). Family demography: Methods and their application. Oxford: Oxford: 228–248.
Ruggles, S. (1987). Prolonged connections: The rise of the extended family in nineteenth century England and America. Madison, WI: University of Wisconsin Press.
Ruggles, S. and De Quincey, T. (1993). Confessions of a Microsimulator : Problems in modeling the demography of kinship. Historical Methods 26(4): 161–169.
Schelling, T.C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology 1(2): 143–186.
Schelling, T.C. (1978). Micromotives and macrobehavior. Norton, New York, USA.
Silverman, E., Bijak, J., Hilton, J., Cao, V.D., and Noble, J. (2013, forthcoming). When demography met social simulation: A tale of two modelling approaches. Journal of Artificial Societies and Social Simulation .
Silverman, E., Bijak, J., and Noble, J. (2011). Feeding the beast: Can computational demographic models free us from the tyranny of data? In: Lenaerts, T., Giacobini, M., Bersini, H., Bourgine, P., Dorigo, M., and Doursat, R. (eds.). Advances in aArtificial life, ECAL 2011. Cambridge, MA: MIT Press: 747–754.
Silverman, E. and Bryden, J. (2007). From artificial societies to new social science theory. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., and Coutinho, A. (eds.). Advances in artificial life, 9th European Conference, ECAL 2007. Berlin-Heidelberg: Springer: 565–574.
Smith, J.E. (1987). The computer simulation of kin sets and kin counts. In: Bongaarts, J., Burch, T.K., and Wachter, K.W. (eds.). Family demography: Methods and their application. Oxford: Clarendon Press: 249–266.
Spielauer, M. (2007). Dynamic microsimulation of health care demand, health care finance and the economic impact of health behaviours: Survey and review. International Journal of Microsimulation 1(1): 35–53.
Thomson, E., Winkler-Dworak, M., Spielauer, M., and Prskawetz, A. (2012). Union instability as an engine of fertility? A microsimulation model for France. Demography 49(1): 175–195.
Todd, P.M., Billari, F.C., and Simão, J. (2005). Aggregate age-at-marriage patterns from individual mate-search heuristics. Demography 42(3): 559–574.
van Imhoff, E. and Post, W. (1998). Microsimulation methods for population projection. Population. English selection 10(1): 97–138.
Wachter, K.W. (1995). 2030’s Seniors: Kin and Step-Kin [unpublished manuscript]. Berkeley, CA: University of California.
Wachter, K.W. (1997). Kinship resources for the elderly. Philosophical transactions of the Royal Society of London. Series B: Biological sciences 352(1363): 1811–1817.
Wachter, K.W. (1987). Microsimulation of household cycles. In: Bongaarts, J., Burch, T.K., and Wachter, K.W. (eds.). Family demography: Methods and their application. Oxford: Clarendon Press: 215–227.
Willekens, F. (2005). Biographic forecasting: Bridging the micro-macro gap in population forecasting. New Zealand Population Review 31(1): 77–124.
Willekens, F. (2012). Migration: A perspective from complexity science. Paper presented at the Migration workshop of the Complexity Science for the Real World network, Chilworth, UK, 16 February 2012.
Wolf, D. (1994). The elderly and their kin: Patterns of availability and access. In: Martin, L. and Preston, S. (eds.). Demography of aging. Washington DC: National Academies Pres: 146–195.
Zinn, S., Gampe, J., Himmelspach, J., and Uhrmacher, A.M. (2009). MIC–CORE: A tool for microsimulation. In: Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A., and Ingalls, R.G. (eds.). Proceedings of the 2009 Winter Simulation Conference. Austin, TX: IEEE: 992–1002.