Volume 26 - Article 9 | Pages 191–206  

Discussing the Strehler-Mildvan model of mortality

By Maxim Finkelstein

References

Abernethy, J.D. (1998). Gompertzian mortality originates in the winding-down the mitotic clock. Journal of Theoretical Biology 192(4): 419-435.

Weblink:
Download reference:

Abernethy, J.D. (1979). The exponential decrease in mortality rate with age attributed to wearing-out of biological components. Journal of Theoretical Biology 80(3): 333-354.

Weblink:
Download reference:

Anderson, J.J. (2000). A vitality-based model relating stressors and environmental properties to organism survival. Ecological Monographs 70(3): 445-470.

Anderson, J.J., Gildea, M.C., Williams, D.W., and Li, T. (2008). Linking Growth, Survival, and Heterogeneity through Vitality. The American Naturalist 171(1): E20-E43.

Weblink:
Download reference:

Arbeev, K.G., Ukraintseva, S.V., Arbeeva, L.S., and Yashin, A.I. (2005). Mathematical models for human cancer incidence rates. Demographic Research 12(10): 237-272.

Weblink:
Download reference:

Beard, R.E. (1959). Note on some mathematical mortality models. In: Woolstenholme, G. and O’Connor, M. (eds.). The Lifespan of Animals. Boston: Little, Brown and Company: 302-311.

Download reference:

Bongaarts, J. and Feeney, G. (2002). How long do we live? Population and Development Review 28(1): 13-29.

Weblink:
Download reference:

Finkelstein, M. (2008). Failure Rate Modeling for Reliability and Risk. London: Springer.

Download reference:

Finkelstein, M. (2005). Lifesaving explains mortality decline with time. Mathematical Biosciences 196(2): 187-197.

Weblink:
Download reference:

Finkelstein, M. and Esaulova, V. (2006). Asymptotic behaviour of a general class of mixture failure rates. Advances in Applied Probability 38(1): 244-262.

Weblink:
Download reference:

Gampe, J. (2010). Human mortality beyond age 110. In: Maier, H., Gampe, J., Jeune, B., Robine, J.-M., and Vaupel, J.W. (eds.). Supercentenarians. Demographic Research Monographs. Berlin: Springer: 219-230.

Download reference:

Gavrilov, L.A. and Gavrilova, N.S. (1991). The Biology of Life Span: A Quantitative Approach. New York: Harwood Academic Publisher.

Download reference:

Gavrilov, L.A. and Gavrilova, N.S. (2001). The reliability theory of ageing and longevity. Journal of Theoretical Biology 213(4): 527-545.

Weblink:
Download reference:

Gnedenko, B.V. (1943). Sur la distribution limite du terme maximum d’une serie aleatore. The Annals Of Mathematics 44(3): 423-453.

Weblink:
Download reference:

Golubev, A. (2004). Does Makeham make sense? Biogerontology 5(3): 159-167.

Weblink:
Download reference:

Golubev, A. (2009). How could the Gompertz-Makeham law evolve. Journal of Theoretical Biology 238(1): 1-17.

Weblink:
Download reference:

Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society 115: 513-585.

Weblink:
Download reference:

Li, T. and Anderson, J.J. (2009). The vitality model: A way to understand population survival and demographic heterogeneity. Theoretical Population Biology 76(2): 118-131.

Weblink:
Download reference:

Makeham, W.M. (1860). On the law of mortality and the construction of annuity tables. The Assurance Magazine and Journal of the Institute of Actuaries 8(6): 301-310.

Download reference:

Missov, T.I. and Finkelstein, M. (2011). Admissible frailty distributions for a general class of mixture mortality models with known asymptotics. Theoretical Population Biology 80(1): 64-70.

Weblink:
Download reference:

Mueller, L.D. and Rose, M.R. (1996). Evolutionary theory predicts late-life mortality plateaus. PNAS 93(26): 15249-15253.

Weblink:
Download reference:

Steinsaltz, D.R. and Wachter, K.W. (2006). Understanding mortality rate deceleration and heterogeneity. Mathematical Population Studies 13(1): 19-37.

Weblink:
Download reference:

Strehler, B.L. (2000). Understanding aging. Methods in Molecular Medicine 38(1): 1-19.

Weblink:
Download reference:

Strehler, B.L. and Mildvan, A.S. (1960). General theory of mortality and aging. Science 132(3428): 14-21.

Weblink:
Download reference:

Tenenbein, A. and Vanderhoof, I.T. (1980). New mathematical laws of select and ultimate mortality. Trans. Soc. Actuaries 32: 119-170.

Download reference:

Vaupel, J.W. and Yashin, A.I. (1987). Repeated resuscitation: How life saving alters life tables. Demography 24(1): 123-135.

Weblink:
Download reference:

Vaupel, J.W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(3): 439-454.

Weblink:
Download reference:

Yashin, A.I., Begun, A.S., Boiko, S.I., Ukraintseva, S.V., and Oeppen, J. (2001). The new trends in survival improvement require a revision of traditional gerontological concepts. Experimental Gerontology 37(1): 157-167.

Weblink:
Download reference:

Yashin, A.I., Ukraintseva, S.V., Boiko, S.I., and Arbeev, K.G. (2002). Individual aging and mortality rate: how are they related. Social Biology 49(3-4).

Weblink:
Download reference:

Zheng, H., Yang, Y., and Land, K.C. (2011). Heterogeneity in the Strehler-Mildvan General Theory of Mortality and Aging. Demography 48(1): 267-290.

Weblink:
Download reference:

Back to the article