Volume 20 - Article 22 | Pages 541–558
Keeping a learned society young
By Herbert Dawid, Gustav Feichtinger, Joshua R. Goldstein, Vladimir Veliov
References
Cohen, J.E. (2003). How many members could the National Academy of Sciences have? New York, NY, USA: Rockefeller University and Columbia University (Mimeo).
Cohen, J.E. (2006). The Resident Membership of the American Philosophical Society: Demographic Aspects. New York, NY, USA: Rockefeller University (Manuscript from the author).
Feichtinger, G. and Veliov, V.M. (2007). On a Distributed Control Problem Arising in Dynamic Optimization of a Fixed-Size Population. SIAM Journal of Optimization 18(3): 980-1003.
Feichtinger, G., Winkler-Dworak, M., Freund, I., and Prskawetz, A. (2007). On the Age Dynamics of Learned Societies: Taking the Example of the Austrian Academy of Sciences. (VID Working Paper 02/2007).
Henry, L. (1975). Perspectives d'évolution d'un corps. Population 30(2): 241-270.
Henry, L. (1971). Pyramides, statuts et carrières. I. Avancement à l'ancienneté. Sélection. Population 26(3): 463-486.
Henry, L. (1972). Pyramides, statuts et carrières. II. Avancement au choix. Population 27(4-5): 599-636.
Keyfitz, N. (1977). Applied Mathematical Demography. New York: Wiley & Sons .
Keyfitz, N. (1973). Individual mobility in a stationary population. Population Studies 27(2): 335-352.
Leridon, H. (2004). The demography of a learned society. The Académie des Sciences (Institut de France), 1666-2030. Population-E 59(1): 81-114.
Pontryagin, L.S. , Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F. (1962). The mathematical theory of optimal processes. NY: Wiley.
van de Kaa, D.J. and de Roo, Y. (2006). The Members of the Royal Netherlands Academy of Arts and Sciences: 1808 to 2000. A demographic view. (Manuscript).
Vaupel, J.W. (1981). Over-tenured universities: the mathematics of reduction. Management Science 27: 904-913.