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Research Article

The pace of aging: Intrinsic time scales in demography

Tomasz F. Wrycza 1

Annette Baudisch 2

Abstract

BACKGROUND
The pace of aging is a concept that captures the time-related aspect of aging. It formalizes
the idea of a characteristic life span or intrinsic population time scale. In the rapidly
developing field of comparative biodemography, measures that account for inter-species
differences in life span are needed to compare how species age.

OBJECTIVE
We aim to provide a mathematical foundation for the concept of pace. We derive de-
sired mathematical properties of pace measures and suggest candidates which satisfy
these properties. Subsequently, we introduce the concept of pace-standardization, which
reveals differences in demographic quantities that are not due to pace. Examples and
consequences are discussed.

CONCLUSIONS
Mean life span (i.e., life expectancy from birth or from maturity) is intuitively appealing,
theoretically justified, and the most appropriate measure of pace. Pace-standardization
provides a serviceable method for comparative aging studies to explore differences in
demographic patterns of aging across species, and it may considerably alter conclusions
about the strength of aging.
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1. Introduction

Biodemography is a developing branch of demography that over recent decades has begun
to study population dynamics and structure for non-human populations across the tree of
life (Carey and Vaupel 2005; Vaupel 2010). With this development, methods to foster
comparative research are increasingly sought after. For that purpose, Baudisch (2011)
suggested a conceptual framework integrating approaches from life history biology that
allows comparison of patterns of aging across species with vastly different life spans. The
framework distinguishes between the pace of life on one hand and the shape of aging
on the other. This distinction rests on the observation that different species live and die
on different time scales. For example, the life course of a fruit fly is a matter of days,
while the life course of humans is a matter of decades. The characteristic length of life
for a species is taken as measure of the pace of life. Age and age-specific mortality are
standardized by the pace of life to reveal the demographic aging pattern of a species, i.e.
the shape of aging.

Pace-standardization of mortality disentangles the time scale (pace) and the change
in the risk of death over the life course (shape). Thereby, the pace-shape distinction
helps to unravel a problem that gerontologists face when they classify and rank species
with respect to aging. Typically, gerontologists use the change in mortality to capture,
on a demographic level, how organisms age. They compare rates of aging within and
among species (Finch 1990). Rates, however, are given per unit time, say years, which
leads to unfair comparisons when it comes to species that differ substantially in life span.
Baudisch (2011) emphasizes that rates need to be pace-standardized to be meaningfully
compared.

In life history biology, pace-standardization has been applied to facilitate inter-species
comparison. Pearl suggested plotting survival curves over centiles of equivalent life span
(Pearl 1928), and later over percentage deviation from mean duration of life (Pearl and
Miner 1935; Deevey 1947, 1950). Utilizing this standardized time scale, Pearl and Miner
then suggested the now classic distinction between Type I survivorship (rectangular, cor-
responding to increasing mortality with age), Type II survivorship (diagonal, correspond-
ing to constant mortality with age) and Type III survivorship (L-shaped, corresponding
to decreasing mortality with age), which are related to the shape of aging, as discussed
by Baudisch (2011). To standardize survivorship curves, Lynch et al. (2010) used max-
imum life span as their measure of pace, whereas Weon and Je (2011, 2012) used the
length of “characteristic life”, which they give as the age at which survival reaches a
value of exp(−1) (in the Weibull model, this age equals the value of the scale parameter).
Eakin (1994) suggested the use of an intrinsic time scale derived from standardizing by
life expectancy and discussed its relevance to the investigation of biological populations,
an approach he later expanded (Eakin and Witten 1995). Another way of accounting
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for different time scales has been suggested in the context of classic demography. Lee
and Goldstein (2003) investigated rescaling the life cycle by means of a proportionality
assumption, which under some circumstances is justified when comparing human popu-
lations.

Demographers typically use standardization methods when it comes to comparing
rates across populations that differ in population structure to avoid confounding compo-
sitional effects (Preston, Heuveline, and Guillot 2001). By contrast, pace-standardization
is not concerned with age-structure. In fact, differences in population composition will
be the rule rather than the exception for most applications of pace-standardization. Pace-
standardization solely aims to account for differences in time scales of life that differ
across species. Differences in age structure and the spread in age at death are captured by
the shape of aging. Shape measures whether mortality is increasing, constant, or decreas-
ing over age, and whether these changes are more or less pronounced. Pace and shape
are two complementary concepts that help characterize the aging pattern of a species in a
comparative framework (Baudisch 2011).

Analysis of shape relies on the use of intrinsic time scales based on values of char-
acteristic life span, i.e., on pace. A sound foundation for quantifying pace is therefore
required. With the present study we thus wish to contribute a systematic investigation of
alternative measures of pace. We provide a general approach to the pace-standardization
of demographic functions that does not hinge (in the sense specified below) on the par-
ticular choice of a measure. After deriving a list of desired mathematical properties of
pace measures that enable us to evaluate the quality of each measure, we suggest different
candidates. Subsequently, we formally explain the method of pace-standardization. It is a
way of rescaling distributions according to their own specific pace value in order to make
them comparable beyond the dimension of pace. We show that if two distributions are
the same when standardized with respect to some pace measure, this will also be the case
with respect to any other pace measure, as long as the pace measures satisfy a certain
scaling property. Finally, we illustrate the significance of the procedure for compara-
tive research on aging by showing the effect of pace-standardizing on several parametric
mortality models (linear, Gompertz, Weibull). Results and implications are discussed.

It should be noted that, given our focus on studying aging as captured by increasing
mortality over age, in this paper we focus solely on pace measures of death. We wish to
emphasize that reproduction is an equally important factor in the demographic description
of populations. Therefore it is desirable to extend this framework to account for the pace
of reproduction. From that perspective and from the growing interest in evolutionary
biodemography, generation time is a quantity that qualifies as an important candidate
for a pace measure of reproduction (see e.g., Coale 1972; Charlesworth 1994). Other
measures such as first or median age of reproduction, interbirth interval, and average
or maximum number of offspring per reproductive event could further capture the pace
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of reproduction, though this is beyond the scope of the current work and needs to be
thoroughly investigated in future research.

A notation alert: Demographic quantities are given in continuous formulation here and
follow standard demographic notation. The survival function, which gives the probability
of survival up to age x, is denoted as l(x). If X is a positive random variable (life spans),
the corresponding survival function is denoted as lX . The force of mortality or age-
specific hazard is denoted as µ with

µ(x) = − l
′(x)

l(x)
.

The probability density function of death is

f(x) = −l′(x) = µ(x)l(x). (1)

Remaining life expectancy at age x is given by

e(x) =
1

l(x)

∫ ∞
x

l(a)da.

A summary of notation and symbols is given in Appendix B.

2. Properties and measures

What is the characteristic length of life? Previous approaches listed above apply a range of
different measures commonly known to demographers, such as life expectancy, modal age
at death, quantile measures of life span, or maximum life span. What measure should be
preferred depends on the context. We will investigate which of the available measures is
the most appropriate candidate to capture the pace of aging. As evaluation criteria we use
a list of properties provided in the following, that, if fulfilled, facilitate pace-standardized
analysis in demography.

2.1 Properties of pace

A pace measureM is a functionalM : l 7→M(l) that assigns a non-negative real number
M(l) with dimension ’time’ to every survival function l. The following properties are
desirable for pace measures.

P1: For all X it holds that

M(lrX) = rM(lX) ∀r ≥ 0. (2)

1574 http://www.demographic-research.org
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This scaling property ensures that if everybody’s life span changes by the factor r, then
the value of pace changes by this factor as well (in more technical terms, it means that the
functional M is scale-invariant).

P2: For all X it holds that

M(lX+s) =M(lX) + s ∀s ≥ 0. (3)

If everybody gains exactly s ≥ 0 years of life, the value of pace is the original pace
value plus s. This would imply that no one dies before age s. While an age below which
the probability of death is zero seems unrealistic, this property is conceptually helpful,
because it follows that P1 and P2 can be summarized by the simple property

M(ls+rX) = s+ rM(lX) for r, s ≥ 0, (4)

which means that if X is transformed linearly, M(lX) is transformed accordingly.
Expression (4) implies that a population in which everybody lives for exactly s years

has a pace value of s, because

M(ls) =M(ls+0·s)
(4)
= s+ 0 ·M(ls) = s.

This appeals to intuition, as the concept of pace formalizes the idea of a characteristic life
span.

P3:

µ1(x) ≥ µ2(x) ∀x ⇒ M(l1) ≤M(l2). (5)

If two distributions are given so that the age-specific hazard of the first one is at all ages
higher than or equal to the age-specific hazard of the second one, then the pace value of
the first distribution is lower or equal to the pace value of the second one. This property
reflects the fact that while pace captures the characteristic life span, its inverse is at the
same time supposed to capture the level of the force of mortality. Thus, property P3
is important, because it emphasizes that the concept of pace is not only one of central
tendency, but has an additional focus on the force of mortality µ.

2.2 Measures of pace

The measures presented in this subsection satisfy P1, P2, and P3. For clarity, the (simple)
proofs have been moved to Appendix A.
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1. An obvious first measure is the mean age at death (or life expectancy at age 0),
which captures the average life span in the population:

e0 =

∫ ∞
0

xf(x)dx =

∫ ∞
0

l(x)dx =

∫ ∞
0

1

µ(x)
f(x)dx. (6)

This is a quantity widely used in demography, and it is a natural, straightforward
answer to the question about a characteristic life span.

2. A generalization of e0 is given by the class of measures

Mg =

∫ ∞
0

g(l(x))l(x)dx, (7)

where g denotes any absolutely continuous and monotonically non-decreasing func-
tion

[0, 1]→ [0, 1]

with g(1) = 1. For g ≡ 1 one gets e0. Other choices of g can also relate Mg to
known demographic quantities. For example, consider

g1(x) = x.

Then

Mg1 =

∫ ∞
0

l2(x)dx = e0(1−G),

where G denotes the Gini coefficient, a measure of inter-individual inequality - see
Hanada (1983) for a proof of the right hand side of the equality above and Shkol-
nikov, Andreev, and Begun (2003) for an overview of the use of G in demography.

3. Another class of pace measures {Mp|0 < p < 1} is defined in the following way:
For every fixed 0 < p < 1 let Mp be the age (or rather the minimal age, in case it
is not unique) at which the survival function reaches p:

Mp(l) = inf{x|l(x) ≤ p}.

M0.5 is the median, the age up to which half of the cohort survives. For p close to
0, say p = 0.01, Mp corresponds to the age up to which only a small percentage
of a given cohort survives (on average). Thus, in this case Mp provides a contin-
uous approximation to a quantity frequently used in comparative aging research:
ω, the longest life span observed. For some populations, this might be the only
information available.
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Pace measures e0, Mg and Mp have several advantages and disadvantages from a
demographic point of view.

Pace measure e0 has the advantage of satisfying an additional, demographically rele-
vant property:

PA1: If l1, . . . , ln are survival functions and w1, . . . , wn > 0 are weights (so that∑n
k=1 wk = 1), then

l =

n∑
k=1

wklk ⇒ M(l) =

n∑
k=1

wkM(lk), (8)

which means that the pace value of the mixture distribution is the weighted mean of the
pace values of the component distributions. For a proof see Appendix A. Depending on
the application, PA1 can be more or less desirable; in the context of frailty models for
example, it may be important. e0 is the only measure in the list above that satisfies PA1;
in particular, PA1 is not satisfied by Mg if g is not constant.

One disadvantage of e0 (and more generally, of all pace measures Mg as defined
above) is that the value of the integral can be infinite (for distributions where the age-
specific hazard decreases strongly over age, or more generally heavy-tailed distributions),
although this is unlikely to be found in demographically relevant life span distributions.

An advantage of Mg =
∫∞
0
g(l(x))l(x)dx if g is not constant (i.e. if Mg 6= e0) can

be that - since g is increasing - the later ages contribute less to the overall value of the
measure. Thus the measure is more robust with respect to life spans that are very long,
i.e. to outliers.

The quantile pace measures Mp do not satisfy PA1. They do however satisfy a prop-
erty which generalizes (4) to hold for a wider range of transformations instead of only
linear ones:

PA2: If the random variable X has a continuous life span distribution and h is a
nonnegative, monotonically non-decreasing function (such as - but not restricted to -
h(x) = s+ rx), then

M(lh(X)) = h(M(lX)).

For a measure satisfying PA2 it therefore holds that ifX is transformed via h, the value of
the pace measure transforms accordingly. It can be shown that the quantile measures Mp

are the only quantities to satisfy PA2 (see Appendix A). The property is interesting from
a theoretical point of view, but it might not have an immediate relevance for demography.

An advantage of Mp (for any 0 < p < 1) is that it is defined even for some distribu-
tions with infinite mean, and generally requires less data to be computed. A disadvantage
is the lack of sensitivity - adding an arbitrary number of members to a population does
not change the pace value as long as their life spans exceed this pace value. Thus, long
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life spans not only contribute less to the value of the measure (which might be desired if
the value is supposed to be less sensitive to outliers), they do not change its value at all.

As an observation, notice that the arithmetic average of any finite number of pace
measures that satisfy P1 and P2 satisfies P1 and P2 itself. For if M1, . . . ,Mn satisfy (4),
then for

M =
1

n

n∑
k=1

Mk

it holds that

M(ls+rX) =
1

n

n∑
k=1

Mk(ls+rX) =
1

n

n∑
k=1

(rMk(lX) + s) = rM(lX) + s.

If M1, . . . ,Mn satisfy P3 in addition, then so does M .
A classical measure of central tendency is the mode of a distribution, i.e. the age at

which most deaths occur. However, while the mode can be useful in demographic context
(see e.g. Canudas Romo 2008, 2010; Cheung and Robine 2007), it is not a good measure
of pace. Even provided that it is unique (as is certainly the case for human populations if
infant ages are omitted, but might not be the case for other species), the mode does not
satisfy crucial property P3 - see the appendix for a counterexample. Thus, this measure
is not listed here.

3. Pace-standardization

3.1 Method

Any pace measure M can be used to introduce a population-specific intrinsic time scale.
Let xs denote standardized age, which is a dimensionless number measuring age in units
of pace. It is therefore defined by dividing chronological age x by the value of pace:

xs =
x

M
. (9)

Standardized survival curves - functions of standardized age - can then be defined via

ls(xs) := l(x) = l(M xs). (10)

The value of standardized survival at any standardized age is defined as the value of
survival at the corresponding unstandardized age. This corresponds to a scaling (shrink-
ing/stretching) along the x-axis with scaling factor 1

M . Expressions (9) and (10) can be
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used to derive an expression for the standardized hazard

µs(xs) = − 1

ls(xs)

dls(xs)

dxs = −M 1

l(x)

dl(x)

dx
=Mµ(x) (=Mµ(M xs) ), (11)

which corresponds to a scaling along both the x- and the y-axis, with the scaling factors
being M for the y-axis and 1

M for the x-axis. These standardized functions are time-
independent.

Note that the pace measure e0 can be interpreted as the reciprocal of the population
average of the force of mortality in a twofold sense: Firstly, because

µ =

∫ ∞
0

µ(x)c(x)dx =

∫ ∞
0

µ(x)
l(x)

e0
dx

(1)
=

1

e0
,

where c(x) = l(x)
e0

denotes the age distribution in the stationary population. Secondly,
because

1

e0
=

∫∞
0
f(x)dx∫∞

0
1

µ(x)f(x)dx

and the right hand side of the equation is the weighted harmonic mean of µ with the
weights given by the pdf f . Therefore, standardizing µ with M = e0 is conveniently
accomplished by dividing age by average life span and mortality by average mortality,

xs =
x

e0
, µs(xs) =

µ(x)

µ
, (12)

which appeals to intuition.
Within the standardized framework, all mortality patterns have the same pace value

(namely 1), because

lsX(xs) = lX(M(lX)xs) = l X
M(lX)

(xs) ∀xs

P1
=⇒

M(lsX) =M(l 1
M(lX)

X) =
1

M(lX)
·M(lX) = 1.

This property justifies the name ’standardization’.
As each demographic function can be expressed in terms of survival l, standardized

in (10), one can derive standardized expressions for these functions as well:

f s(xs) =Mf(x), es(xs) =
e(x)

M
. (13)

http://www.demographic-research.org 1579



Wrycza & Baudisch: The pace of aging: Intrinsic time scales in demography

3.2 Equivalence of pace measures with respect to standardizing

Assume two pace measures M1 and M2, both satisfying P1. Denote standardization with
respect to M1 and M2 with the upper indices s1 and s2 respectively. Assume further two
positive random variables with survival functions lX1 and lX2 so that

ls1X1
= ls1X2

. (14)

Then it also holds that
ls2X1

= ls2X2
.

This means that if two distributions of ages at death give the same standardized distribu-
tion with respect to measure M1, they also give the same standardized distribution with
respect to measure M2.

Proof: From (14) it follows that

lX1(zM1(lX1)) = lX2(zM1(lX2)) ∀z,

or, with y = zM1(lX1
):

lX1
(y) = lX2

(
y
M1(lX2

)

M1(lX1)

)
∀y, (15)

which implies
lX1 = l(M1(lX1

)

M1(lX2
)

)
X2

.

Because M2 satisfies P1, this implies

M2(lX1
) =

M1(lX1)

M1(lX2
)
M2(lX2

),

so that
M1(lX2)

M1(lX1
)
=
M2(lX2)

M2(lX1
)
.

Inserting this into (15) gives

lX1
(y) = lX2

(
y
M2(lX2)

M2(lX1
)

)
∀y,

and thus with w = y
M2(lX1

)

lX1
(wM2(lX1

)) = lX2
(wM2(lX2

)) ∀w,
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which implies
ls2X1

= ls2X2
.

Q.E.D.

Pace-standardization can be seen as providing an equivalence relation on life span
distributions: Two distributions are equivalent if they give the same standardized distribu-
tion. The result above states that if two pace measures satisfy property P1, they provide
the same partition into equivalence classes, regardless of how their actual values might
differ.

3.3 Mortality: Standardized vs. unstandardized perspective

The age-specific force of mortality (or hazard of death) is an important quantity for biode-
mographic research on aging patterns of different species, and standardized depictions of
mortality and other vital rates have recently been used to reveal the diversity of patterns
across species (Jones et al. 2014). It is therefore instructive to see how pace-standardizing
simple hazard functions can give results that drastically differ from the unstandardized
perspective. For this subsection the pace measure is M = e0.

First, assume a linearly increasing force of mortality

µ(x) = bx+ c

with fixed b = 0.0001, and let c vary between 0.001 and 0.01. Figure 1 depicts the
resulting hazard functions with the ’normal’ perspective (i.e. µ(x) over chronological age
x) on the left and the pace-standardized perspective (i.e. µs(xs) over xs = x

e0
) on the

right. Lighter color indicates higher values of c.
Comparing these two alternative views reveals a striking difference: While in the

normal view all the curves have the same slope, so that a common interpretation would
conclude that all the populations in question experience the same strength of aging, the
pace-standardized view reveals that the higher c is, the lower the slope of the curve turns
out to be, i.e. the less aging the population in question experiences.

As another example, assume Gompertz mortality defined as

µ(x) = aebx

with fixed b = 0.1, and let a vary between 0.00001 and 0.0002. Figure 2 depicts the
resulting hazard functions, again both from normal and pace-standardized perspective.
Lighter color corresponds to higher values of a (hazard is presented on a log-scale).

Again, there is a clear difference between the two panels. Because parameter b is held
constant, the logarithm of the force of mortality in the normal view always has the same
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slope - and thus, the common interpretation of b as the ’rate of aging’ would conclude
that all the populations in question experience the same strength of aging. But the pace-
standardized view reveals that the higher a is, the lower the slope of log-mortality turns
out to be, i.e., that the pace-standardized rate of aging be0 implies less aging for higher
values of a.

As a last example, assume Weibull mortality defined as

µ(x) = αxβ

with fixed β = 2, and let α vary between 0.00005 and 0.0005. Figure 3 depicts the re-
sulting hazard functions, again both from both normal and pace-standardized perspective.
Lighter color indicates higher values of α.

In this case, it turns out that all the pace-standardized schedules fall on the same line,
i.e., that parameter α does not influence the pace-standardized hazard function at all (this
can also be shown analytically, see Appendix A). Parameter β is all that matters for the
shape of the standardized curve. While Ricklefs’ “rate of aging“ defined as ω = α

1
β+1

(Ricklefs 1998) would have assigned different rates to each curve, no differences in shape
are observed in the framework that is suggested here.

Figure 1: Comparison of normal (left panel) vs. pace-standardized (right
panel) view of linear hazard functions
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Figure 2: Comparison of normal (left panel) vs. pace-standardized (right
panel) view of Gompertz hazard functions
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Figure 3: Comparison of normal (left panel) vs. pace-standardized (right
panel) view of Weibull hazard functions

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

age

µ

0.0 0.5 1.0 1.5

0
1

2
3

4

age/e0

µ*
e0

http://www.demographic-research.org 1583



Wrycza & Baudisch: The pace of aging: Intrinsic time scales in demography

4. Conclusion

Comparative aging research that aims to find and measure differences in demographic
aging patterns across species is an exciting and rapidly developing field (Baudisch and
Vaupel 2012; Jones et al. 2014; Baudisch et al. 2013), and it crucially hinges on service-
able methods.

To facilitate meaningful comparison between different species, with this paper we
provide a systematic discussion of 1) how the time aspect of aging can be measured, 2)
how pace measures can be used as an intrinsic time scale to create pace-standardized
demographic functions, and of 3) why this procedure does not hinge on the particular
choice of a measure (in the sense specified in 3.2). We conclude that of all the candidates
for pace measures discussed here, e0 is the one to be preferred (if its value is available),
because it additionally satisfies property PA1 concerning mixture distributions, which
is demographically relevant. All measures of life span commonly used in demographic
applications have been discussed in the present analysis, although further candidates may
exist.

The examples in 3.3 show that the difference between unstandardized and standard-
ized perspectives can be immense if one compares mortality curves. Conclusions about
the strength of aging may change and even reverse when switching perspectives. There-
fore, the methods discussed here may prove useful to researchers who investigate differ-
ences in demographic aging patterns between different populations/species - in particular
if the populations in question differ significantly with respect to how long they live, i.e.,
in their pace values.
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Appendix

A Properties and measures

Note that

ls+rX(x) =

{
1 x ≤ s,
lX(x−sr ) x > s.

(16)

This relationship is needed for the following proofs.
Proof that Mg satisfies (4) for any absolutely continuous and monotonically non-

decreasing
g : [0, 1]→ [0, 1]

with g(1) = 1:

Mg(ls+rX) =

∫ ∞
0

g(ls+rX(x))ls+rX(x)dx =

(16)
=

∫ s

0

g(1)dx+

∫ ∞
s

g

(
lX

(
x− s
r

))
lX

(
x− s
r

)
dx =

z= x−s
r= s+ r

∫ ∞
0

g(lX(z))lX(z)dz = s+ rMg(lX).

Q.E.D.

Proof that for each p, Mp satisfies (4):
Let 0 < p < 1 be fixed. For every x with

lX(x) ≤ p

it holds that
ls+rX(s+ rx)

(16)
= lX(x) ≤ p.

Conversely, any y with ls+rX(y) ≤ p < 1 has to be > s and for x = y−s
r it holds that

lX(x) = ls+rX(y) ≤ p.

It follows that
{y|ls+rX(y) ≤ p} = {s+ rx|lX(x) ≤ p},

and thus the infimum of both sets is also the same.
Q.E.D.
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Proof that Mg satisfies P3 for any absolutely continuous and monotonically non-
decreasing

g : [0, 1]→ [0, 1]

with g(1) = 1:
Because

µ1(x) ≥ µ2(x) ∀x ⇒ l1(x) ≤ l2(x) ∀x,
and, because g is monotonically non-decreasing, also

g(l1(x)) ≤ g(l2(x)) ∀x,

it follows that

Mg(l1) =

∫ ∞
0

g(l1(x))l1(x)dx ≤
∫ ∞
0

g(l2(x))l2(x)dx =Mg(l2).

Q.E.D.

For the quantile measures Mp, P3 follows directly from the fact that

µ1(x) ≥ µ2(x) ∀x ⇒ l1(x) ≤ l2(x) ∀x.

Proof that the mode of a distribution does not satisfy P3:
Assume linearly increasing mortality µ(x) = bx + c. By setting f ′(x) = l(x)(µ′(x) −
µ2(x)) = 0 in order to find the maximum of f , one finds that the mode is 1√

b
− c

b . If
c > 0 is kept fixed, this value is 0 when b = c2, then increases with b as long as b ≤ 4c2,
and afterwards decreases as b increases. For example, if c = 0.01, for b1 = 3c2 = 0.0003
the mode is ≈ 24.4, while for b2 = 4c2 = 0.0004, the mode is 25 and thus bigger than
for b1. But b1 ≤ b2 means that µ1(x) ≤ µ2(x) ∀x, which according to P3 would imply
M(l1) ≥M(l2), which is not the case. Thus the mode does not in general satisfy P3.
Q.E.D.

Proof that of all the measures presented, only e0 satisfies PA1:
For the measures Mg assume

l1(x) =

{
1 0 ≤ x ≤ 2,

0 x > 2,

l2(x) =

{
1 0 ≤ x ≤ 1,

0 x > 1,
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Then for any given 0 < w < 1 consider lw = wl1 + (1− w)l2, so that

lw(x) =


1 0 ≤ x ≤ 1,

w 1 < x ≤ 2,

0 x > 2.

Since Mg(l1) = 2 and Mg(l2) = 1, it holds that

wMg(l1) + (1− w)Mg(l2) = 1 + w.

On the other hand,

Mg(lw) =

∫ 1

0

g(1) dx+

∫ 2

1

g(w)w dx = 1 + wg(w),

so that if PA1 holds, g(w) = 1. But this is true for any 0 < w < 1, so that g ≡ 1 is the
only function for which Mg gives a measure satisfying PA1.

For the quantile measures Mp assume l1(x) = e−x, l2(x) = e−2x, w1 = w2 = 0.5
and a 0 < p < 1 fixed. Then Mp(l1) = − log(p) and Mp(l2) = − 1

2 log(p). For
l(x) = 0.5(l1(x) + l2(x)) it holds that

l

(
1

2
(Mp(l1) +Mp(l2))

)
= l

(
−3

4
log(p)

)
=

1

2
(p

3
4 + p

3
2 ) 6= p,

so that
Mp(l) 6= w1Mp(l1) + w2Mp(l2).

Q.E.D.

Proof that if a measure M satisfies PA2, then there exists a 0 < p < 1 with M =Mp

(with Mp referring to the quantile measures as defined in subsection 2.2):
The proof relies on the probability integral transform. If FY is the cumulative distribu-

tion function of the random life span variable Y , then the random variable Z = FY (Y ) =
1 − lY (Y ) is uniformly distributed on [0, 1], and the cumulative distribution function of
F−1Y (Z) is FY . F−1Y (u) = inf{y|FY (y) ≥ u} is a monotone non-decreasing function, so
that PA2 with h = F−1Y and X = Z gives

M(lY ) = F−1Y (M(lZ)),

and thus
FY (M(lY )) = FY (F

−1
Y (M(lZ))) =M(lZ),
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where p =M(lZ) is a fixed value not depending on Y , so that M(lY ) =Mp(lY ).
Q.E.D.

Proof that for the Weibull mortality µ(x) = αxβ , parameter α does not influence the
standardized distribution, i.e., that µ1(x) = α1x

β , µ2(x) = α2x
β implies µs

1 = µs
2:

We choose e0 as the pace measure (as shown in 3.2, the particular choice of a pace
measure does not matter). If ω = α

1
β+1 , then

µ(x) = ω(ωx)β and l(x) = e−
1

β+1 (ωx)
β+1

.

This implies

e0 =

∫ ∞
0

l(x)dx
z=ωx
=

1

ω

∫ ∞
0

e−
zβ+1

β+1 dz =
C(β)

ω

with a function C(β) depending only on β. This means

ls(xs) = l(xse0) = e−
1

β+1 (C(β)xs)β+1

,

which does not depend on α. Thus µs also does not depend on α.
Q.E.D.

B Overview of notation

Symbol Meaning

x age
ω maximum life span
X,Y random variables (of age at death)
Mg Pace Measure (specified by subscript)
l(x) Survival function
lX(x) Survival function corresponding to rand. var. X
µ(x) Force of mortality, age-specific hazard
f(x) Probability density function of age at death
e(x) Remaining life expectancy (as function of x)
e0 Life expectancy at age zero
xs, ls, µs, fs es Quantities standardized
a, b, c, α, β parameters of mortality functions
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