

DEMOGRAPHIC RESEARCH

VOLUME 28, ARTICLE 23, PAGES 649-680
PUBLISHED 27 MARCH 2013
http://www.demographic-research.org/Volumes/Vol28/23/
DOI: 10.4054/DemRes.2013.28.23

Research Material

Chronological objects in demographic research

Frans Willekens

© 2013 Frans Willekens.

This open-access work is published under the terms of the Creative Commons
Attribution NonCommercial License 2.0 Germany, which permits use,
reproduction & distribution in any medium for non-commercial purposes,
provided the original author(s) and source are given credit.
See http:// creativecommons.org/licenses/by-nc/2.0/de/

Table of Contents

1 Introduction 650

2 Chronological objects: overview 653

3 Objects of class “Date” or class POSIX 658

4 Date as elapsed time since reference point in time 662

5 Date as elapsed time since reference event 665

6 Illustrative applications 667

7 Conclusion 671

8 Acknowledgements 672

 References 673

 Annex 678

Demographic Research: Volume 28 Article 23
Research Material

http://www.demographic-research.org 649

Chronological objects in demographic research

Frans Willekens1

Abstract

BACKGROUND
Calendar time, age and duration are chronological objects. They represent an instant or
a time period. Age and duration are usually expressed in units with varying lengths. The
number of days in a month or a year depends on the position on the calendar. The units
are also not homogeneous and the structure influences measurement. One solution,
common in demography, is to use units that are large enough for the results not to be
seriously affected by differences in length and structure. Another approach is to take the
idiosyncrasy of calendars into account and to work directly with calendar dates. The
technology that enables logical and arithmetic operations on dates is available.

OBJECTIVE
To illustrate logical and arithmetic operations on dates and conversions between time
measurements.

METHOD
Software packages include utilities to process dates. I use existing and a few new
utilities in R to illustrate operations on dates and conversions between calendar dates
and elapsed time since a reference moment or a reference event. Three demographic
applications are presented. The first is the impact of preferences for dates and days on
demographic indicators. The second is event history analysis with time-varying
covariates. The third is microsimulation of life histories in continuous time.

CONCLUSION
The technology exists to perform operations directly on dates, enabling more precise
calculations of duration and elapsed time in demographic analysis. It eliminates the
need for (a) approximations and (b) transformations of dates, such as Century Month
Code, that are convenient for computing durations but are a barrier to interpretation.
Operations on dates, such as the computation of age, should consider time units of
varying length.

1 Netherlands Interdisciplinary Demographic Institute. E-mail: willekens@nidi.nl.

Willekens: Chronological objects in demographic research

650 http://www.demographic-research.org

1. Introduction

A person born on July 12th 1977 marries on July 12th 2007. What is the age at marriage?
This is a simple question for humans but a complicated one for computers. Software
packages do not always produce correct results. The common method is to divide the
age in days by the average length of a year. The age at marriage is 10957 days, which
translates in age 30 in completed years (exact age of 30.02 years) if the length of a year
is taken as 365 days and age 29 (exact age of 29.9986 years) if the more precise
approximation of 365.25 days is used. A person born one year later on July 12th 1978
marrying on July 12th 2008 marries at an age of 10958 days, which results in 30 years in
both cases. This approach to calculating age, although approximate, is recommended by
major texts on survival analysis (e.g. Kalbfleisch and Prentice 2002; Therneau and
Grambsch 2000, p. 71). SPSS (IBM 2011, p. 153), STATA (Stata 2009, p. 338) and
SAS (SAS Institute, 2008, p. 4663) determine age in days and calculate the age in years
by dividing the number of days by 365 (SAS) and 365.25 (SPSS, Stata). The need for
an approximation is a consequence of peculiarities of our calendar: years (and months)
vary in length. The relevance of this problem from a demographic perspective is
twofold. First, demography has historically been particularly concerned about age
allocation and demands that, technology permitting, age be computed precisely.
Second, the relation between period (current date), cohort (date of birth) and age, which
is widely used in demography, is not valid unless age is measured precisely and not
approximately.

The calendar has other consequences. A month has a varying number of days of
the week. Most months have 4 Saturdays but some have 5 Saturdays. The number of
weekends varies too. If death, childbirth, marriage or another demographic event is
concentrated on a particular day of the week, then the event is more likely in months
with five occurrences of that day than in months with four occurrences. Examples of
concentration of events on particular days are widespread. Saturday is a preferred day
for weddings (e.g. Haskey 1996). Births are less likely on weekends (e.g. Goodman et
al. 2005; Lerchl and Reinhard 2008). Delivering a child outside the normal working
week is associated with increased risk of perinatal and neonatal death (e.g. Hong et al.
2006; Pasupathy et al. 2010). The neonatal mortality rate is higher on weekends
compared to weekdays (e.g. Salihu et al. 2012). Sudden Infant Death Syndrome (SIDS)
is more common on weekends (e.g. Mooney et al. 2004). Patients admitted to hospital
on a Saturday or Sunday are more likely to die than patients admitted mid-week (e.g.
Freemantle et al. 2012; Mohammed et al. 2012). In some countries, intoxication-related
deaths peak during weekends and around festival days when alcohol is widely
consumed in excess (e.g. Mäkelä et al. 2005). In the USA, mortality from natural causes
spikes around Christmas and New Year (e.g. Phillips et al. 2010). These are some

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 651

examples from the literature that demonstrate the role of the calendar in the timing of
demographic events.

Calendar time, age, period, interval and duration are key concepts in demography.
They are chronological objects. Measurement of these objects and arithmetic and
logical operations are common tasks of a demographer. Age and durations are often
expressed in years and months, and sometimes in days. Years and months are time units
that vary in length. The common approach is to replace the unit of varying length with a
unit of fixed length. Common assumptions of years of fixed length (365 days
disregarding leap years, or 365.25 days or 365.242199 days considering leap years) and
months of fixed length of 30.437 days are usually good enough approximations. An
accurate measurement of age on a particular date from the date of birth is not possible
without a calendar. To obtain estimates of demographic rates by month, some authors
control for different lengths of months, e.g. Doblhammer and Vaupel (2001) in a study
of the effect of month of birth on the lifespan and Sobotka et al. (2005) in a study of
fertility levels. The peculiarities of our calendar are particularly significant in
simulations of life histories in continuous time.

Units of time used in demography not only vary in length, they are also not
homogenous. Their structure impacts measurement. Demographic events are seldom
uniformly distributed during the week, month or year. The effect of disregarding
preferences for particular years, months or days of the week may distort demographic
findings. Many Chinese couples chose to marry or have a child during the year of the
Dragon. In the West, Saturday is a preferred day for weddings; it is Friday in other parts
of the world. If such preferences exist, the number of Saturdays (and Fridays) in a
month may have an effect on the monthly marriage rate. Although the effect is likely to
be small, it may be significant. For instance, if 10 percent of the population at risk
marries within a year and 80 percent of marriages take place on a Saturday, then the
monthly marriage rate is 0.0101 if the month has 5 Saturdays and 0.0087 if the month
has 4 Saturdays. Calot (1981), Calot and Sardon (2004), Wilson and Smallwood (2007)
and others draw attention to that problem and control monthly marriage rates for day-
of-the-week effect. Sobotka et al. (2005) correct monthly birth data for seasonal and
calendar factors. Day-of-the-week effects reveal important heterogeneity in
demographic processes that remains hidden in demographic studies that use large time
units. In the West, it is not uncommon for between 60 and 80 percent of marriages to
take place on a Saturday. In the USA between 2005 and 2010, 56% fewer children were
born on a Sunday than on a Tuesday or another normal working day2. Some effects
raise public concern. Using data on 14.2 million patients who were admitted to NHS
hospitals in England between April 2009 and March 2010, Freemantle et al. (2012)

2 Calculated from data in National Vital Statistics Reports 2005-2010,US National Center for Health
Statistics, Hyattsville, MD.

Willekens: Chronological objects in demographic research

652 http://www.demographic-research.org

show that those admitted on a Sunday have a 16% higher risk of dying within a month
than those admitted on a Wednesday. Those who become inpatients on a Saturday are
11% more likely not to survive. The results received wide media attention in the UK
and increased the awareness of day-of-the-week effects (see e.g. NHS-London 2011).
The measurement of effects of day-of-the-week, public holidays or other peculiarities of
our calendar, require operations on calendar dates. The use of chronological objects in
data analysis is not new (see e.g. James and Pregibon 1993). What is new is that new
technology enables accurate computations on calendar dates. Using this technology to
compute ages and durations more precisely is the subject of this paper.

Dates may be represented as calendar dates (year, month and day) or as number of
days or months since a reference point in time or a reference event. Several major
surveys such as the Demographic and Health Survey (DHS), the US Health and
Retirement Survey (HRS), and the Framingham Heart Study (FHS) do not use the
Gregorian calendar, but represent dates as times elapsed since a reference point. If the
elapsed time is measured in days the date is known as Julian date. The DHS and the US
National Survey on Family Growth present dates in Century Month Code (CMC),
which counts the number of months since 1st January 1900. The HRS and FHS use SAS
dates, which count the number of days since 1st January 1960. Scientists often use
decimal date, in particular decimal year, which represents a date as the year and fraction
of a year. For instance, exposure time in person years and the life expectancy are
generally expressed in decimal years. The different representations of dates call for
conversion methods. Several conversion methods are addressed in this paper.

To compute durations, R is used. R is an open-source software language for
statistical modeling and analysis3. It is a collection of functions that perform specific
tasks. Basic functions are included in Base R maintained by a Core Team of experts.
Additional functions in packages are contributed by researchers around the world and
are included in the Comprehensive R Archive Network (CRAN). The date functions
presented in this paper are from Base R and contributed packages, in particular
lubridate (Grolemund and Wickham 2011, 2012) and Biograph (Willekens 2012).

The paper consists of seven sections. Section 2 is an introduction to chronological
objects. The different types or classes of chronological objects are presented. Section 3
covers one particular class of object more extensively; the object of class “Date”, which
represents the date in the Gregorian calendar. Dates as elapsed times (days, months or
years) since a reference date are discussed in Section 4, where Julian dates and CMCs
are covered. Dates as elapsed times since a reference event are covered in Section 5.
Age belongs to this category. Section 6 includes three illustrative applications of date
arithmetic in demographic analysis. The first application requires the computation of
the number of Saturdays and Sundays in a month. The second is episode splitting, a

3 www.r-project.org.

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 653

common problem in event history analysis with time-varying covariates. The third is
the microsimulation of life histories. Section 7 concludes the paper.

2. Chronological objects: overview

A calendar is a system of keeping time. The calendar in use in most of the Western
world is the Gregorian calendar, introduced in 1582 by Pope Gregory XIII. It succeeded
the Julian calendar, introduced in 46 BC by Julian Caesar. In both calendars a regular
year has 365 days divided into 12 months. A leap day is added to February every fourth
year. The Julian year is, on average, 365.25 days long. The calendar gave every fourth
year 366 days. Reform was required because the Julian calendar drifted behind the solar
calendar, based on the Earth's orbital period. At the time of reform the difference was
about a week. The Gregorian calendar provides that every fourth year has 366 days,
except for years divisible by 100 but not 400. In leap years, it has an extra day in
February. The year 2000 is a leap year, but 2100 is not. The new calendar was
introduced on October 15, 1582. In the Chinese, the Hindu, and the Hebrew calendars,
which are lunisolar calendars, a leap year has an extra month.

On computers and often in science, a date is represented as the time elapsed since a
reference point in time to facilitate arithmetic operations on dates. Character variables,
generally used to represent dates, are difficult to work with. Time elapsed is a numeric
variable and that class of variables enables arithmetic operations. Julian dates and
Century Month Codes are examples of dates expressed as time elapsed. The Julian date
(JD) system of time measurement presents the time in days and fractions of a day since
January 1, 4713 BC Greenwich noon in the Julian calendar. It is used in astronomy.
Today, the term Julian date or Julian Day Number is used to denote the interval of time
in days since a reference date. The reference date used as origin of time measurement is
known as (reference) epoch. Unix time, or POSIX ("Portable Operating System
Interface") time is part of the POSIX standard. POSIX is an open operating system
interface specified by the Institute of Electrical and Electronics Engineers (IEEE) to
assure code portability between operating systems. POSIX time defines time as the
number of seconds elapsed since midnight Coordinated Universal Time (UTC) of
Thursday, January 1, 1970. That reference date and time is known as Unix epoch and
the POSIX standard is a formula for calculating seconds since the epoch. Most software
packages use the Julian date system to store dates and time internally on the computer,
but the epoch differs. R uses Unix time. SAS, S-plus and STATA use a different
reference: January 1, 1960. An event that occurs on January 30, 1960 occurs at 29 days
(1+29). An event that occurs on December 3, 1959 occurs at day –29 (December 31 is
day –1 and December 3 is day –29). In Excel, dates are stored as days since January 1,

Willekens: Chronological objects in demographic research

654 http://www.demographic-research.org

1900. In SPSS dates and times are stored as numbers of seconds from midnight,
October 14, 1582 (the beginning of the Gregorian calendar). For example, in R, March
7, 2002 is represented as 11753. In SAS or Stata, it is 15406, while in SPSS midnight of
March 7, 2002 is 13 234 835 972. Dates that occur before the reference date are
negative numbers. Julian dates may be used to convert SPSS dates into R, SAS or
STATA dates. The number of days since October 14, 1582 is the number of seconds
divided by 86400, which is the number of seconds in a day.

Some observational studies also use the Julian date system and present a date as
time elapsed since a reference date. For instance, the Framingham Heart Study (FHS),
which is a longitudinal study that started in 1948-50 and is widely used in
epidemiology, and the US Health and Retirement Study (HRS) use SAS dates (days
since January 1, 1960). In the HRS, if the day of an event (e.g. birth) or the day of
censoring is not known but the month is recorded, the 15th is the imputed day. If the
date of birth is not known but the year is given, 1st July is imputed (see St.Clair et al.
2011, p. 107). Many surveys do not record the day of an event but the month and report
the date as the number of months elapsed since a reference date. The Century Month
Code is such a form of date reporting. The date is reported as the number of months
since 1st January 1900, with January 1900 defined as month 1. The CMC coding
scheme is designed to facilitate the computation of elapsed time. Dates in CMC are not
directly interpretable. As a consequence, the identification of anomalies and outliers is
not straightforward.

Packages in the Comprehensive R Library Network (CRAN) that are particularly
useful in demographic research generally require dates to be numeric, i.e. years, months
or days since an origin or epoch. The packages include survival for survival analysis,
mstate and msm for multistate survival analysis and Epi for epidemiological analysis,
including drawing Lexis diagrams and age-period-cohort analysis. Date variables that
are not numeric “will cause some of the utilities to crash” (Epi manual). The function
cal.yr of the Epi package converts a Date object into decimal year. It first computes
the Unix date (Julian date with origin 1st January 1970) and obtains the number of years
by dividing the number of days by 365.25. The author, Carstensen (2012)
acknowledges that inaccuracies may arise and gives as an illustration 1 Jan 2000. The
cal.yr function converts that date into 1999.999. Such an inaccuracy can be avoided
by using computations that account for varying lengths of months and years.

In R calendar dates are objects of a particular class. The concept of class is central
to object-oriented programming. Class is an attribute of an object. Objects in a class are
recognized because they share characteristics. Classes direct and streamline operations
on objects. They invoke the appropriate method when operations are performed on
objects and functions are called to invoke specific operations. If a generic function is
applied to an object, the class of the object determines which method is used. For

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 655

instance, the generic plot function does different things depending on the class of the
object to be plotted. When a generic function is called, an internal dispatching method
finds the class of the object and invokes the appropriate method. Classes of objects
commonly encountered in R include “numeric”, “character”, “logical”, “list”,
“function” and “Date”. In addition, there are many classes defined in packages and
user-defined classes. If a date is given as a character string, the object is of class
“character”. To differentiate it from other character objects, the subclass “date” is
given. Dates are usually entered on the computer as character strings. To perform
operations on dates, objects of class “character” need to be converted into objects of
class “date”. R has several functions that convert character strings into date objects. The
as.Date and POSIXlt/POSIXct functions are the most common (see below). The
POSIX class is particularly useful when timezone manipulation is important. To
facilitate arithmetic and logical operations on dates, the computer converts dates into
numeric objects (days or seconds since a reference date).

Base R has a number of functions to process dates. For instance, the as.Date
function converts a date from a character string into a Date object. ISOdate converts
three numeric values (year, month and day) into a Date object. The function
weekdays identifies which day of the week a given calendar date is. In addition, there
are several contributed packages that may be used to process dates. The package chron,
developed by James in S and ported to R by Hornik, handles chronological objects
(James and Hornik 2011). It converts between Julian and calendar dates, finds
weekdays and holidays, extracts the year, month and day of a date, etc. The package
date developed by Therneau in S and ported to R by Lumley, Halvorsen and Hornik,
has functions for handling dates. It converts calendar dates into Julian dates and vice
versa (Therneau et al. 2012). The default reference date is 1st January 1960. The Julian
date for June 23, 1965 is 2000 in the date package and -1653 in Base R. Several
functions of the date package were included in earlier versions of the survival package.
The survival package, developed by Therneau and ported to R by Lumley, has a
function (ratetableDate) that converts an object of class “Date” into number of
days since 1st January 1960 (Therneau and Lumley 2012). The function is used in the
function pyears of the survival package, which computes the duration of follow-up
by a cohort of subjects. Since the time unit is not variable, the authors recommend using
day as the unit of time and converting days into years by dividing the number of days
by 365.25. The ConvCalendar package, developed by Gray and Lumley (2010),
converts between the Date class and d/m/y for several calendars, including Persian,
Islamic, and Hebrew. Wuertz et al. (2012) developed the package timeDate for financial
engineering and computational finance, with special attention to special days, holidays
and Daylight Saving Time (see also Chalabi et al. 2011). Grolemund and Wickham
(2011, 2012) published lubridate.

Willekens: Chronological objects in demographic research

656 http://www.demographic-research.org

The package lubridate deals with a critical issue in operations on dates; namely,
the variable length of the time units month and year. Grolemund and Wickham (2011)
distinguish between units of time of constant length (duration is always the same) and
relative units of time; their length varies and is relative to when they occur. A year may
have 365 or 366 days depending on when it occurs relative to other years. Only seconds
have a consistent length. Grolemund and Wickham introduce four time-related object
classes based on the Java language Joda-Time project (Colebourne and O'Neill 2010).
Joda-Time introduces a conceptual model of the different ways Java handles timespans
and changes in date and time. The four time-related objects are relevant for
demographic analysis. They are: instant, interval, duration and period. An instant is a
specific moment in time, such as midnight, January 1, 2013. An instant is defined as the
number of seconds from midnight, January 1, 1970 (Joda-Time uses milliseconds).
Lubridate does not create a new class of instant objects. Instead, it recognizes any date-
time object that refers to a moment of time as an instant. It accepts objects of class
POSIXct, POSIXlt and “Date” to define instants. For instance, the date object created
using z=as.Date("2010-01-30") is an instant object. To test it, use
as.instant(z). Intervals, durations and periods are ways of recording timespans.
An interval is the timespan between two instants. An interval has a length and a
position in the calendar. The length of an interval can be determined unambiguously
because we know when it occurs. An object of class interval is created by specifying
two instants, e.g.

 library (lubridate)
 span <- new_interval(as.Date("2009-01-30"),
 as.Date("2012-02-25")).

Intervals are implemented in lubridate (and Joda-Time) as half-open, which is to
say that the start instant is inclusive but the end instant is exclusive. For age to be
measured correctly, age must be an object of class interval. Only in that case does the
age account for the varying lengths of months and years.

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 657

A period represents the length of an interval. It tracks changes in clock time
between two instants. Periods are measured in common time units: years, months, days,
hours, minutes, and seconds. With the exception of seconds, none of these units have a
fixed length. Leap years and Daylight Saving Time can expand or contract a unit of
time depending on when it occurs. For this reason, periods do not have a fixed length
unless they are paired with a start date (see below). The following code changes an
object of class interval to an object of class period:

 p=as.period(span,unit="year").

The length of the period is measured in year, month, day, hours, minutes and
seconds. It is "3y 0m 26d 0H 0M 0S". The object p of class period has 6 slots. A
slot extracts an object from a class. The year is extracted by p@year, the month by
p@month and the day by p@day. The lubridate functions seconds, days, weeks,
months and years are shortcuts to create period objects. These units are not of fixed
length because units expand or contract in length to accommodate conventions such as
leap years, leap seconds, and Daylight Saving Time. Consider a person born on July
12, 1977 who marries at exactly age 30. The date of marriage is the sum of the age at
birth, which is an instant (start date), and age, specified as an object of class period:

 as.Date("1977-07-12") + years(30)

which is July 12, 2007. The period object years(30) is "30y 0m 0d 0H 0M 0S". The
number of days in the 30 years is not fixed but depends on the date of birth.

Duration measures the exact number of seconds in an interval. The duration of the
period object 30 years is

 dur <- as.duration (years (30))

The object dur is a numeric object and its value is 946080000 seconds. The command
duration (1,"days") gives the number of seconds in a normal day (86400) and
duration (1,"years")gives the number of seconds in a year that is not a leap
year. The command duration (span) gives 96854400s (seconds). It measures the
exact passage of time in seconds. The number of seconds does not always align with
measurements made in larger units of time such as hours, months and years. This is
because the exact length of larger time units are affected by conventions such as leap
years and Daylight Saving Time. Seconds are converted into minutes, hours and days
using the most common lengths in seconds: Minutes = 60 seconds, hours = 3600
seconds, days = 86400 seconds. The duration of the interval span in days is

Willekens: Chronological objects in demographic research

658 http://www.demographic-research.org

duration(span)/duration(1,"days"), which yields 1121 days. Units larger
than days are not used in lubridate due to their variability. Values are given with the
warning that they are only estimates. The value of dur in seconds is exact. The value in
years is approximate (~29.98 years).

Base R measures duration with the “difftime” class. The code

 span <- as.Date("2012-02-25") - as.Date("2009-01-30"))

produces an object of class “difftime” representing the number of days between two
instants (1121 days).

To determine the exact age of a person on a given date in years (decimal years),
the date of birth must be provided. In other words, an object of class interval must be
given. In addition, the Gregorian calendar between the two instants must be considered.
The length of the timespan between date of birth and the given date is not sufficient to
determine the exact age and, as the example at the beginning of this paper shows, to
correctly determine the age in completed years. The length of the timespan in days, in
combination with the date of birth, is sufficient to determine the exact age. Consider a
person born on July 12, 1977 who marries on July 12, 2007. The correct age at
marriage is

 f <- new_interval (as.Date ("1977-07-12"),
 as.Date("2007-07-12"))
 z <- as.period (f).

The result is "30y 0m 0d 0H 0M 0S". The age in days is age.d <- duration
(f)/duration (1,"days"), which is 10957 days. The number of years,
assuming years of 365.25 days, is age.d/365.25 or 29.99863 years.

3. Objects of class “Date” or class POSIX

The as.Date function of Base R converts a character vector of calendar dates into an
object of class “Date”. For instance, z <- as.Date ("2010-08-20") and
as.Date(paste(2010, 8, 20, sep="-")) produce an object of class
Date. The function as.numeric(z) gives the Julian date. For example,
as.numeric(as.Date ("2010-08-20")) gives 14841, which is the number of
days since January 1, 1970. To convert the numeric object into a Date object, use
as.Date(14841,origin="1970-01-01"). The epoch or origin must be
provided.

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 659

R stores dates as Unix dates. It communicates the dates with the user by giving the
year, month and day. The default format is a four digit year, followed by a month, then
a day, separated by either dashes or slashes (e.g. YYYY-MM-DD where YYYY is the
year, MM is the month and DD is the day). The default format follows the rules of the
ISO 8601 international standard which expresses a day as "2001-02-03". Dates do not
need to be in the standard format. The as.Date function allows a variety of input
formats. For example, as.Date('20/08/2010',format='%d/%m/%Y') reads
the date as a character string with day, month and four-digit year. The outcome is the
date in the standard format: 2010-08-20. The same result is obtained using a different
format: as.Date("August 20 2010",format="%B%d%Y"). The following
symbols can be used with the date format:

Symbol Meaning Example
%d day as a number (0-31) 01-31
%a
%A

abbreviated weekday
unabbreviated weekday

Mon
Monday

%m month (00-12) 00-12
%b
%B

abbreviated month
unabbreviated month

Jan
January

%y
%Y

2-digit year
4-digit year

07
2007

The class “Date” of Base R is one of several classes of chronological objects.

Other classes are "date" (from package date), "chron" and "dates" (from package chron)
and the “timeDate” object of the timeDate package. Another important class is the
POSIX class mentioned above. The POSIX class is particularly useful when time zones
are considered because it allows for different time zones. The as.Date function
converts a POSIX object into a Date object. The default input format for POSIX dates is
the same as Date dates: the year followed by the month and day, separated by slashes or
dashes.

Several calculations can be performed on objects of classes “Date” and POSIX.
The ISOdate function converts a year, month and day into a date object of class
POSIXct and class POSIXlt. The POSIXct class represents and stores the date/time
values as the number of seconds since January 1, 1970. The POSIXlt class stores them
as a list with elements for second, minute, hour, day, month, and year. The year, month
and day may be retrieved from this representation. Consider midnight of August 20,
2012. The number of seconds since midnight January 1, 1970 is

 d <- ISOdate (2012,8,20,0,0,0)
 s <- as.numeric(d) = 1345420800

Willekens: Chronological objects in demographic research

660 http://www.demographic-research.org

where d is an object of class POSIXct. If the exact reference time is not specified, the
default is noon and not midnight. This default is often confusing in the manipulation of
dates in demographic research. The year, month and day can be extracted from the
POSIXlt object f <- as.POSIXlt(d). The year is f$year+1900; the month is
f$mon+1 (f$mon is the number of completed months) and the day is f$mday. To
extract the components of the date from s, use

 g <- as.POSIXlt(s,origin="1970-01-01").

Note that the epoch must be provided. The default time zone is Universal Time,
Coordinated (UTC). It is a successor of the Greenwich Mean Time (GMT). GMT
differs from London time (British Standard Time BST) because GMT is not affected by
Daylight Saving Time. The London time for midnight August 20, 2012 UTC time is

 as.POSIXlt(s,origin="1970-01-01",tz="Europe/London")

which is "2012-08-20 01:00:00 BST".

The function strptime also converts a character representation of a date into a
POSIXlt object:

 d <- strptime("20-01-2012",format="%d-%m-%Y").

The format of the date needs to be provided. The output format is the ISO format.
Subtraction of two dates gives the number of days between the dates. For instance, the
time difference between July 13, 1997 and August 20, 2010 is:

 b1=ISOdate(1997,7,13,0,0,0)
 b2=ISOdate(2010,8,20,0,0,0)
 b2-b1

which is a time difference of 4786 days. The date is measured at midnight (0 hours, 0
minutes and 0 seconds).

Instead of days, weeks may also be used. In the example above,
difftime(b2,b1,units='weeks') the time difference is 683.7143 weeks.
Units can be seconds, minutes, hours, days or weeks. The input consists of dates of
class “Date” or POSIX.
The format function is used for formatting dates for output. For example,

http://en.wikipedia.org/wiki/Greenwich_Mean_Time

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 661

 d<- as.Date("1Mar1946",format="%d%b%Y")
 format (d,"%d-%B-%Y")

gives us "01-March-1946". To select the year, use format (date,"%Y"). An
example of this would be :

 d<- as.Date("1Mar1946",format="%d%b%Y")
 format (d,"%Y")

which results in the character variable "1946". To obtain the month, use format
(d,"%B"), to get the day of the month, use format (d,"%d") and to get the day
of the week, use format (d,"%A"). An alternative to the format function is the
strptime function of Base R. It converts a date as a character string into an object of
class POSIXlt and gives the date in an ISO date format. For example

 strptime("25Oct1970",format="%d%b%Y")

accepts a date in the format given and returns the date in ISO format. The function
strftime accepts a date in the ISO format and returns the date in a desired format. The
ISO format is required. Other formats result in wrong dates. For example,

 strftime("1970-10-25",format="%d%b%y")

returns "25Oct70".

The code

 strftime ("25-12-1970",format="%d%b%y")#

results in "19Dec25", and strftime ("25-12-1970",format="%d%b%Y") in
"19Dec0025".

Time zones and Daylight Saving Time (DST) complicate operations on dates and
times. In most demographic applications, time zones and DST are not important. But
suppose you want to attend a seminar (webinar) at your institute in Rostock, Germany
while visiting San Francisco. The presentation is on 21th June 2013 at 3:00 p.m.; when
should you log in? The time is4

4 For more information on this subject, see Revolutions Blog, a blog dedicated to news and information of
interest to R users. The editor is David Smith (http://blog.revolutionanalytics.com/2009/06/converting-time-
zones.html) (Accessed January 16, 2013).

Willekens: Chronological objects in demographic research

662 http://www.demographic-research.org

 meeting <- as.POSIXct("2013-06-21 15:00",
 tz="Europe/Berlin")

It is the Central European Summer Time (CEST). The following code produces the
time you need to log in:

 login <- format(meeting, tz="America/Los_Angeles",
 usetz=TRUE)

The result is "2013-06-21 06:00:00 PDT", which is 6:00 a.m. Pacific
Daylight Time. An alternative function that gives the same result is the lubridate
function with_tz:

 with_tz(meeting, "America/Los_Angeles").

4. Date as elapsed time since reference point in time

In this section, I consider two formats of elapsed time: (a) Century Month Code, which
is the number of months since a fixed reference date and (b) decimal date, which
expresses a calendar date as calendar year and fraction of a year. Both formats give a
numeric object. Many surveys in the social and health sciences express dates in months
since a fixed reference date, without information on the day. The reference date is often
January 1, 1900, in which case the coding is referred to as Century Month Code (CMC).
CMCs are used in fertility surveys (e.g. the US National Survey on Family Growth),
labour force surveys, demographic and health surveys (e.g. Demographic and Health
Survey)5. The coding scheme is particularly relevant for demographic analysis since it
has been used in several surveys, including the World Fertility Survey, launched in the
1970s under the auspices of the International Statistical Institute (ISI). The scheme is
documented in demographic texts (see e.g. Pullum 2004). Blossfeld and Rohwer (2002)
and Blossfeld et al. (2007) use it in a basic text on event history modeling. The CMC
measures the months elapsed since January 1, 1900. For instance, CMC 555 is March
1946 and CMC 1347 is March 2012. The CMC is generally an integer but may be a real
number (number with a fractional or decimal component). If the date is known precisely
(day, month and year), the CMC is a real number. If the date is known approximately

5 For the Demographic and Health Survey, see the online guide at http://legacy.measuredhs.
com/help/datasets/ (Accessed January 16, 2013) and for the US National Survey on Family Growth, see
http://www.cdc.gov/nchs/data/nsfg/NSFG_2006-2010_UserGuide_MainText.pdf (Accessed January 16,
2013).

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 663

(month), the CMC is an integer number. If CMC is an integer, the transition is assumed
to take place at a given day of the month, usually the beginning of the month or the
middle of the month. It is important to make the day explicit since surveys may assume
that events occur at the beginning of the month, but that censoring occurs at the end of
the month (e.g. the German Life History Survey [GLHS] data distributed by Blossfeld
and Rohwer 2002). The CMC coding scheme is applied because the conversion of dates
into numerical values facilitates the computation of durations between two dates. A
disadvantage is that the interpretation of event dates is much harder.

In demographic analysis, it may be necessary to convert calendar dates into CMC
and vice versa. Let us convert January 10, 1984. The Date_as_cmc function, which
is part of the utilities of Version 2 of the Biograph package, released in 2012 (Willekens
2012), converts a calendar date into CMC. For example, Date_as_cmc("1984-
01-10") gives the CMC 1009 and Date_as_cmc(c("1984-01-10","1946-
03-05")) results in the vector with elements 1009 and 5556.

To convert a date in CMC into a calendar date, the components of the date are
considered: year, month and day. Year and month are derived from the date in CMC
and the day needs to be provided. The Biograph function cmc_as_Date converts
CMC into the calendar date and produces a character string. For example,
cmc_as_Date (1009,15) is January 15, 1984 and cmc_as_Date (555) is
March 1, 1946. The first argument is the date in CMC and the second argument is the
day. If the day is omitted, it is assumed to be 1 (default). The desired date format may
be different, e.g. cmc_as_Date (555,1,"%d%b%y") gives us "01Mar46".

The decimal date represents a date as a year and fraction of a year. The function
Date_as_year, which is a utility in Biograph, computes the decimal date from the
calendar date. It uses relative time; it accounts for the different lengths of months and
leap years. For instance,

 Date_as_year (c("2012-02-29","2010-02-29"),
 format.in="%Y-%m-%d")

converts the first date but not the second date because 2010 is not a leap year and
February 29 does not exist. It uses the difftime function of Base R. The result is the
numeric vector {2012.161 NA}7. Other packages have a similar function. For
instance, the function cal.yr of the Epi package for statistical analysis in

6 The date functions of Biograph are documented in the manual of the package. The package includes a Doc
folder with an R programme that illustrates calls to the different date functions of the package. To find the
location of the Doc folder after the package is installed, use system.file (package="Biograph")
7 The common formula that considers the average duration of a month is (see e.g. Mamun, 2003):
year.frac <- year+(month-1)/12+(day-1)/(30.437*12) where 30.437 is the average
number of days in a month.

Willekens: Chronological objects in demographic research

664 http://www.demographic-research.org

epidemiology (Carstensen 2012) converts dates into decimal years by assuming that all
years are 365.25 days long. To show that the procedure may lead to inaccuracies,
Carstensen (2012) converts January 1, 2000, which is 1999.9986. Date_as_year
("2000-01-01") gives us 2000. The decimal_date function of the lubridate
package is not able to convert January 1, 2000 to a decimal year. The call
decimal_date (as.Date("2000-01-01")) results in NA.

To check the precision of the conversion into decimal years, the decimal year may
be converted back into a calendar date. The function year_as_Date of Biograph
converts a decimal year into a calendar date. For example, Date_as_year converts
January 30, 2000 into 2000.079235 , and year_as_Date converts 2000.079235 into
January 30, 2000. The year_as_Date function gives the date in a format specified
by the user. If no format is specified, the standard format is used: year, month and day.
The code year_as_Date (2012.161) gives us February 28, 2012 instead of
February 29, 2012. Inaccuracies remain but the reasons are not yet known.

The function cmc_as_year converts CMC into decimal date. It uses relative
time. Consider March 2012: cmc_as_year(1347) is 2012.164 . The decimal date
may be converted into CMC using the year_as_cmc function of Biograph. The
function produces an object with two components: the CMC and the day used in
converting Date into CMC.

To convert a duration in days to a date, the following code may be used. Suppose a
period of 10 days starts on February 20, 2012. The end of the period is

 as.Date(as.numeric(as.Date("2012-02-20"))+10,
 origin="1970-01-01")

which is March 1, 2012. The procedure accounts for the leap day in the Gregorian
calendar. If 2012 is replaced with 2013, the result is March 2, 2013. The operation
converts the calendar date (Date object) into a Julian date, adds 10 and converts the
Julian date back to a calendar date.

The same result is obtained using a function of lubridate package:

 as.Date("2012-02-20")+days(10).

5. Date as elapsed time since reference event

In some observational studies, the date is represented as time elapsed since a reference
event. Common reference events are birth, marriage, entry into the job market or an
observational study. Common examples of dates as elapsed times since a reference
event are age, duration of marriage, number of days since a diagnosis or surgery, and

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 665

time-on-study. For instance, the Framingham Heart Study (FHS) gives event dates in
days since exam 1 (in addition to SAS dates)8. If the calendar date of the reference
event is known, ages and durations can be converted into calendar dates. Time
measurement as days or years elapsed since a reference event also arises in simulation
of life histories. In that case, age is used as the time scale and the number of persons of
the same age can easily be determined. To determine the number of individuals of a
given age at a given calendar date, dates of birth must be given. If virtual subjects in a
simulation are allocated dates of birth, ages can be converted into calendar dates and the
size and age composition of the virtual population at a given point in time can be
determined.

Age calculations are not trivial because the lengths of years and months vary with
their position in the calendar. A division of the number of days since birth by 365.25 is
an approximation. In Section 2 of the paper, it became evident that the computation of
the exact age at a given date requires an object of class interval. It requires the date of
birth and the given date, or the date of birth and the age in days. The Date_as_age
function of Biograph uses lubridate functions to define interval and period objects and
to compute the exact age. Suppose a person born on July 12, 1977 marries on July 12,
2007, i.e. on his 30th birthday. The following code produces the age:

 age <- Date_as_age (x="2007-07-12",
 format.in="%Y-%m-%d",
 born="1977-07-12").

The result is an object with four components: (1) the age in seconds, (2) the age in
days, (3) age in years, months and days, and (4) the age in decimal years (years and
fraction of a year). The age in decimal years is obtained by subtracting the decimal date
of marriage from the decimal date of birth. The function uses lubridate functions. Since
the computation of age is essential in demographic analysis and the Date_as_age
function is new, the procedure is described in some detail. The date of birth and date of
marriage are:

 marriage <- ISOdate(2007,07,12,0,0,0)
 birth <- ISOdate (1977,07,12,0,0,0).

The following code, using lubridate functions, produces the exact age

 f=new_interval(birth,marriage)
 z=as.period (f,unit="year")

8 http://www.framinghamheartstudy.org/share/data/soe_06as.html (Accessed January 16, 2013)

Willekens: Chronological objects in demographic research

666 http://www.demographic-research.org

The result is "30y 0m 0d 0H 0M 0S", as it should be. The age in completed years is
z@year. An alternative way of obtaining the age is f%/%years(1).

The time difference between marriage and date of birth is 10957 days. The age at
marriage in days is obtained by

 age.d <- new_interval(ymd("1977-07-12"),
 ymd("2007-07-12")) %/% days(1)

or

 difftime(ymd("2007-07-12"),ymd("1977-07-12")).

The age in seconds is obtained by converting the interval object into a duration object:

 d <- as.duration (f)

with d an object of class “duration”. This gives us 946684800 seconds, which in that
period is exactly 30.00 years. The number of days is the number of seconds divided by
the number of seconds per day, which is 86400. It is 946684800 /86400 = 10957 days.

If a year is assumed to have 365.25 days, the age is 10957/365.25 = 29.9986 years
or 29 years in completed years. Division should be by years of relative length and not
by years of constant length.

The date of birth and the age may be converted into a date using Biograph’s
age_as_Date function:

 age_as_Date (30,"1977-07-12",format.born="%Y-%m-%d",
 format.out="%Y-%m-%d").

The date is "2007-07-12".

6. Illustrative applications

Calot wanted to know the effect of the number of Saturdays in a month on the monthly
marriage rate. The estimation of the Saturday effect on monthly marriage rates is
difficult to detect in real data because of relatively strong seasonal effects (see e.g.
Haskey 1996; Wilson and Smallwood 2007). Therefore a hypothetical example was
given in the introduction. I am not aware of recent studies that identify the Saturday
effect on the monthly marriage rate. A comparable issue is the effect of number of
Sundays in a month on the number of births. Fewer children are born on Sunday (and

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 667

Saturday) than on a weekday. The daily distribution of births changed dramatically,
starting in the late 1960s (Kotzamanis and Kostaki 2011). Kotzamanis and Kostaki
(2011) calculate coefficients to estimate the day-of-the-week effect and the Vienna
Institute of Demography does the same as part of "Geburtenbarometer". In the USA
during the period 2005-2010, an average of 7400 children were born on a Sunday, 8500
on a Saturday and 13300 on a Tuesday. Consider 2008. Months with five Sundays had
an average of 7335 fewer births (2 percent) than months with four Sundays and the
Sunday effect is significant at the 1 percent level. The General Fertility Rate (number of
births per 1000 women aged 15 to 44, on an annual basis for specified month), declines
from 69 in months with four Sundays to 67.5 in months with five Sundays. The decline
is larger if seasonally adjusted birth rates are used. In months with five Sundays, the
fertility level is 2.5 children per 1000 women aged 15 to 44 below that in months with
four Sundays and the Sunday effect is significant at a 1 percent level.

The Sunday effect is determined in five steps. The first step is to list all the dates
between January 1, 2008 and December 31, 2008:

 start <- as.Date("2008-01-01")
 stop <- as.Date("2008-12-31")
 d <- seq(start,stop,by=1).

The second step is to select the dates that are Sunday:

 dd = subset (d,weekdays(d)=="Sunday").

In the third step, Century Month Codes (CMC) are generated for the months in the
vector dd. Using CMCs is a simple way to differentiate between months in successive
years.

 cmc <- as.POSIXlt(dd)$year*12+as.POSIXlt(dd)$mon+1

The object cmc is numeric. The code table(cmc) gives the number of Sundays
per month in 2008. In the fourth step, a dummy variable is generated for regression
analysis. The variable is 1 for months with 5 Sundays and 0 otherwise:

 cmc.index <- ifelse (table(cmc)==5,1,0).

In the final step, a Poisson regression model is used to determine the Sunday
effect.

The second application is episode-splitting. In survival analysis, the presence of a
time-varying covariate often requires that an episode is divided in two episodes, one

Willekens: Chronological objects in demographic research

668 http://www.demographic-research.org

before the change in the time-varying covariate and one after the change9. For instance,
Blossfeld and Rohwer (2002) wanted to know how entry into first marriage impacts the
job-exit rate. Job exit is the event of interest and marital status is a time-varying
covariate. A job episode in which a person marries is split in two episodes at the date of
marriage. In survival and event history analysis, episode-splitting is a technique to
study the effect of time-varying covariates (see also Mills 2011).

Suppose a person enters a job on September 20, 2011, marries on Saturday, May 5,
2012 and leaves the job for another job on July 2, 2012. From the job entry date to the
marriage date or censoring, the person contributes exposure time to the group of non-
married persons. From marriage to the job exit date or censoring, the person contributes
exposure time to the group of married persons. The following code splits the job
episode in two episodes (before marriage and after marriage) and creates two records. It
splits the job episode that starts on September 20, 2011 and ends on July 2, 2012 at the
date of marriage (May 5, 2012). The code is:

 start <- as.Date ("2011-09-20")
 marriage <- as.Date ("2012-05-05")
 stop <- as.Date("2012-07-02")
 d <- seq(start,stop,by=1)
 m.group <- ifelse (d<marriage,0,1)
 data <-data.frame(ID=10,Start=start,Marriage=marriage,
 Stop=stop)
 newdata <- lapply(data, rep, 2)
 newdata <- do.call("data.frame", newdata)
 newdata$ms <- c(0,1)
 start2 <- ifelse (newdata$ms==1,marriage,start)
 stop2 <- ifelse (newdata$ms==0,marriage,stop)
 newdata$Start <- as.Date(start2,origin="1970-01-01")
 newdata$Stop <- as.Date(stop2,origin="1970-01-01").

The ifelse function produces objects start2 and stop2 that have the same
attributes, including class, as the test object (which is numeric). Therefore, start2
and stop2 are numeric. Their values are Unix dates of job entry, job exit, and
marriage (number of days since January 1, 1970). The numeric objects need to be
converted into “Date” objects. The code adopts essential elements of the survSplit
function of the survival package (Therneau and Lumley 2012), which splits a record of
a survival object (an episode) in multiple records.

9 Another approach is to specify a multistate model (Aalen et al. 2008, p. 358).

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 669

The third application is the simulation of population change produced by changes
in longevity and life histories. When time is measured in integral months and
simulation proceeds month by month, such as in SOCSIM (Wachter et al. 1997: Mason
2011), differences in length of months are disregarded. When time is continuous and a
duration is expressed in days or seconds, a calendar is required to convert days
(seconds) into months and years. In LifePaths of Statistics Canada (Gribble et al. 2003)
and MicMac (Zinn and Gampe 2011), events can occur at any arbitrary moment, and
are not artificially restricted to annual or monthly intervals. Simulations take place in
continuous time. LifePaths is part of Modgen, a generic microsimulation programming
language, developed at Statistics Canada10. In this section I describe the time tracking
in MicMac. The MicMac source code can be downloaded from the website of the Max
Planck Institute for Demographic Research11. MicMac consists of a multistate cohort-
survival population projection model (Mac) and a microsimulation model (Mic). A pre-
processor reads the data and estimates transition rates, a simulation engine performs the
microsimulations (MicCore), and a post-processor tabulates and graphs the results. The
pre- and post-processors are in R and the simulation engine is in Java. The
microsimulation model generates individual life histories from transition rates between
functional states, birth rates and death rates. The rates are age-specific and they may
vary by covariate and change in time. They are the parameters of waiting time
distributions that are piecewise exponential. From these distributions random waiting
times are drawn to determine who moves between states, what transitions occur, and
when they occur. Simulation starts at a given date (e.g. January 1, 2004) and ends at
another date (e.g. December 31, 2050). The population at the starting date is the initial
population. Between the two dates, individuals transfer between states, children are
born, and some individuals die. Individuals may also immigrate and emigrate. Ages at
transition are measured in milliseconds. The exact dates of birth of the starting
population are not known, but the years of birth are known because at the starting date
the age of the population is given in single years of age. Dates of birth are assigned
randomly to a day of the year by drawing from the standard uniform distribution U[0,1]
(Zinn and Gampe 2011, p. 28). Time at birth is measured in elapsed time: milliseconds
since midnight January 1, 1970. The number is negative for births before that date.
Milliseconds are converted into days using the formula: s/1000/60/60/24, where s is the
number of milliseconds since the reference time. Event times are also converted into
calendar dates (format: "YYYY-mm-dd"). The calendar date of an event is obtained as
the sum of the reference date (January 1, 1970), an object of class “Date”, and the
elapsed time in days. The result is an object of class “Date”. Consider a virtual
individual aged 20 on January 1, 2004. The individual was born in 1983. Suppose the

10 http://www.statcan.gc.ca/microsimulation/index-eng.htm (Accessed January 16, 2013).
11 http://www.demogr.mpg.de/cgi-bin/micmac/login.plx (Accessed January 16, 2013).

Willekens: Chronological objects in demographic research

670 http://www.demographic-research.org

random draw results in the individual being born at midnight on August 25, 1983. The
time of birth is 430.6 million seconds (0.4306176e+12 milliseconds) or 4984 days since
the reference time.

 d=ISOdate (1983,08,25,0,0,0)
 milliseconds = as.numeric (as.Date(d)) *86400 *1000

The virtual individual enters ‘observation’ (simulation) at midnight on January 1,
2004 (1.072915e+12 elapsed milliseconds), gets a first child at midnight November 18,
2032 (1.984349e+12 elapsed milliseconds) and a second child on September 12, 2034.
The age at birth of the first child and the interval between the first and the second child
are outcomes of randomly drawing waiting times from distributions that describe time
to the next child, time to a change in marital status and time to death. The shortest
waiting time determines the transition that occurs and the age at transition. Immigrants
are generated from immigration rates by age and covariates. One female immigrant in
the virtual population is born on March 1, 2012, immigrates on November 30, 2013,
and has three children. They are born on October 20, 2031, October 7, 2037 and
October 6, 2045. The observation is censored on December 31, 2050.

The date functions of MicMac are in the pre- and postprocessor
micmacPreFun.r and micPostFun.r. The random draws and the computation
of dates are done in the function dateTransformation, which transforms birth
dates and transition times into dates. The ages at transition and the durations between
transitions are computed in the function diffBetweenDates, which computes the
difference in years between two dates. The function accounts for leap years. MicMac
computes the age on January 1, 2005 of the individual born on August 25, 2003 as
follows:

 cal1.year - cal2.year - 1 + daysInSimYear +
 restDaysInBirthYear

where cal1.year=2005, cal2.year=2003, restDaysInBirthYear is the
number of days spent in 2003 between the date of birth and the end of the year (130
days) divided by 365, and daysInSimYear is the number of days spent in 2005 (1
day) divided by 365. On January 1, 2005 (end of that day), the person is 1.36 years of
age (decimal year). This illustrates operations on dates in microsimulation in continuous
time. The dates and ages may also be obtained using the functions discussed earlier in
this paper.

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 671

7. Conclusion

Calendar time (period, cohort) and age are key concepts in demography. The
computation of age and duration is central to the discipline. Age calculations generally
involve an approximation, although a good one. The approximation uses months and
years of constant length, whereas in reality the duration of a month or a year depends on
when the month or year occurs, i.e. on the position in the calendar. In recent years there
has been a growing interest in arithmetic and logical operations on dates. This paper
introduces a systematic treatment of chronological objects in demography. Two
representations of dates are distinguished. The first is the Gregorian calendar, which
represents dates by year, month and day. The second is the Julian date, which represents
dates as the number of days since a reference point in time (epoch), and its extensions:
(a) months since a reference point in time and (b) days since a reference event. These
two categories encompass all representations of dates in data collection (surveys,
follow-up studies, etc.) and data processing. Operations on dates require a conversion of
one date representation into another. A number of conversion algorithms and the
associated R functions are presented in this paper. The availability of conversion
algorithms reduces the need for date coding schemes, such as the Century Month Code.
Century Month Codes facilitate calculations of durations but hinder the interpretation of
raw data and exploratory data analysis.

As the technology evolves and conversion algorithms become widespread in
software packages and spreadsheets, arithmetic and logical operations on chronological
objects are expected to increase. Conversions between calendars, e.g. the Chinese,
Hindu, Islamic and Gregorian calendars, are expected to become widely accessible,
resulting in opportunities for demographic studies within and across calendar systems.
Conversion algorithms will change data collection practices because they reduce the
need for conversion of date of birth and dates at other demographic events from the
local calendar (e.g. lunar calendar) to the Gregorian calendar or another standard. The
development is expected to increase the accuracy of date and age reporting. A
systematic investigation of chronological objects may also address the cross-cultural
differences in counting a person’s age. In the East Asian system of age reckoning,
which originated in China, a newborn starts at age one and each Lunar New Year,
rather than the birthday, adds one year to the person’s age. As a result, people may be
one or two years older in the Asian system of age reckoning than in the Western
system, which makes age reporting ambiguous (Zeng and Gu 2009, p. 62). A systematic
study of chronological objects will gradually remedy the many problems date and time
measures pose in demographic research. A good starting point of a systematic study is
the distinction between instant, interval, period and duration, recently introduced in R
by Grolemund and Wickham (2011).

Willekens: Chronological objects in demographic research

672 http://www.demographic-research.org

8. Acknowledgements

I thank the referees for their excellent comments and suggestions. I also thank Maria
Winkler-Dworak for the information on the use of the day-of-the-week effect in the
“Geburtenbarometer”.

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 673

References

Aalen, O.O., Borgan, Ø., and Gjessing, H.F. (2008). Survival and event history
analysis. A process point of view. New York: Springer.

Blossfeld, H.P., Golsh, K., and Rohwer, G. (2007). Event history analysis with Stata.
Mahwah, NJ: Erlbaum.

Blossfeld, H.P. and Rohwer, G. (2002). Techniques of event history modeling. New
approaches to causal analysis. Mahwah, NJ: Erlbaum

Calot, G. (1981). Le mouvement journalier des naissances à l’intérieur de la semaine
(Daily movement of births during the week). Population 36(3): 477-504.
doi:10.2307/1532617.

Calot, G. and Sardon, J.P. (2004). Methodology for the calculation of Eurostat’s
demographic indicators. Luxembourg: Eurostat, European Demographic
Observatory. (Population and social conditions; 3/2003/F/no 26)

Carstensen, B. (2012) Epi: A package for statistical analysis in epidemiology. Version
1.1.40. http://cran.r-project.org/web/packages/Epi/index.html (accessed January
16, 2013).

Chalabi, Y., Mächler, M., and Wuertz, D. (2011). Rmetrics – timeDate package. The R
Journal 3(1): 19-24.

Colebourne, S. and O'Neill, B.S. (2010). Joda-Time - Java Date and Time API.
http://joda-time.sourceforge.net (accessed January 16, 2013).

Doblhammer, G. and Vaupel, J.W. (2001). Lifespan depends on month of birth.
Proceedings of the National Academy of Sciences of the United States 98(5):
2934-2939. doi:10.1073/pnas.041431898.

Freemantle, N., Richardson, M., Wood, J., Ray, D., Khosla, S., Shahian, D., Roche,
W.R., Stephens, I., Keogh, B., and Pagano, D. (2012). Weekend hospitalization
and additional risk of death: An analysis of inpatient data. Journal of the Royal
Society of Medicine 105(2): 74-84. doi:10.1258/jrsm.2012.120009.

Goodman, M.J., Nelson, W.W., and Maciosek, M.V. (2005). Births by day of week: A
historical perspective. Journal of Midwifery and Women’s Health 50(1): 39-43.
doi:10.1016/j.jmwh.2004.09.005.

Gray, B.J. and Lumley, T. (2010) ConvCalendar: converts dates between calendars.
Version 1.1. http://cran.r-project.org/web/packages/ConvCalendar/index.html
(Accessed January 16, 2013).

http://dx.doi.org/10.2307%2F1532617
http://cran.r-project.org/web/packages/Epi/index.html
http://joda-time.sourceforge.net/
http://dx.doi.org/10.1073%2Fpnas.041431898
http://dx.doi.org/10.1258/jrsm.2012.120009
http://dx.doi.org/10.1016%2Fj.jmwh.2004.09.005
http://cran.r-project.org/web/packages/ConvCalendar/index.html

Willekens: Chronological objects in demographic research

674 http://www.demographic-research.org

Gribble, S., Hicks, C., and Rowe, G. (2003). The LifePaths microsimulation model.
Paper presented at the International Microsimulation Conference on Population,
Ageing and Health: Modelling Our Future. Canberra, Australia: University of
Canberra, NATSEM.

Grolemund, G. and Wickham, H. (2011). Dates and times made easy with lubridate.
Journal of Statistical Software 40(3).

Grolemund, G. and Wickham, H. (2012). Package lubridate (Version 1.2.0).
http://cran.r-project.org/web/packages/lubridate/index.html (Accessed January
16, 2013).

Haskey, J. (1996). The day of the week on which couples marry. Population Trends 85:
45-52.

Hong, J.S., Kang, H.C., Yi, S-W., Han, Y.J., Nam, C.M., Gombojav, B. and Ohrr, H.
(2006). A comparison of perinatal mortality in Korea on holidays and working
days. BJOG: An International Journal of Obstetrics & Gynaecology. 113(11):
1235-1238. doi:10.1111/j.1471-0528.2006.01054.x.

IBM (2011). IBM SPSS Statistics 20 Core System User’s Guide. Chicago: IBM
Software Group.

James, D. and Hornik, K. (2011). chron: Chronological objects which can handle dates
and times. R package (Version 2.3-43), http://cran.r-project.org/web/packages/
chron/index.html (Accessed January 16, 2013).

James, D.A. and Pregibon, D. (1993). Chronological objects for data analysis. In:
Tarter, M.E. and Lock, M.D. (eds.). Statistical applications of expanding
computer capabilities: Proceedings of the 25th Symposium on the Interface.
Fairfax Station, VA: Interface Foundation of North America: 177-182.

Kalbfleisch, J.D. and Prentice, R.L. (2002). The statistical analysis of failure time data.
New York: Wiley.

Kotzamanis, B. and Kostaki, A. (2011). Seasonality of births in Europe and the USA: A
comparative approach. Paper presented at the Annual Meeting of the Population
Association of America, Washington D.C., March 31 – April 2, 2011.

Lerchl, A. and Reinhard, S.C. (2008). Where are the Sunday babies? II. Declining
weekend birth rates in Switzerland. Naturwissenschaften 95(2): 161-164
doi:10.1007/s00114-007-0305-4.

http://cran.r-project.org/web/packages/lubridate/index.html
http://dx.doi.org/10.1111%2Fj.1471-0528.2006.01054.x
http://cran.r-project.org/web/packages/chron/index.html
http://cran.r-project.org/web/packages/chron/index.html
http://dx.doi.org/10.1007%2Fs00114-007-0305-4

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 675

Mäkelä, P., Martikainen, P., and Nihtilä, E. (2005). Temporal variation in deaths related
to alcohol intoxication and drinking. International Journal of Epidemiology,
34(4): 765-771. doi:10.1093/ije/dyi025.

Mamun, A.A. (2003). Life history of cardiovascular disease and its risk factors:
multistate life table approach and application to the Framingham Heart Study.
Amsterdam: Rozenberg Publishers.

Mason, C. (2011). Socsim oversimplified. Berkeley: Demography Lab, University of
California. http://lab.demog.berkeley.edu/socsim/socsimOversimplified.pdf
(Accessed January 16, 2013).

Mills, M. (2011). Introducing survival and event history analysis. London: Sage
Publications.

Mohammed, M.A., Sidhu, K.S., Rudge, G., and Stevens, A.J. (2012). Weekend
admission to hospital has a higher risk of death in the elective setting than in the
emergency setting: A retrospective database study of national health service
hospitals in England. BMC Health Services Research 12(87). doi:10.1186/1472-
6963-12-87.

Mooney, J.A., Helms, P.J., and Jolliffe, I.T. (2004). Higher incidence of SIDS at
weekends, especially in younger infants. Archives of Disease in Childhood
89(7): 670-672. doi:10.1136/adc.2002.023408.

NHS-London (2011). Adult emergency services: Acute medicine and emergency
general surgery. Case for change. London: National Health Service.
http://www.londonhp.nhs.uk/wp-content/uploads/2011/09/AES-Case-for-
change_September-2011.pdf (Accessed January 16, 2013).

Pasupathy, D., Wood, A.M., Pell, J.P., Fleming, M., and Smith, G.C.S. (2010). Time of
birth and risk of neonatal death at term: Retrospective cohort study. British
Medical Journal 341(c3498). doi:10.1136/bmj.c3498.

Phillips, D., Barker, G.E., and Brewer, K.M. (2010). Christmas and New Year as risk
factors for death. Social Science and Medicine 71(8): 1463-1471.
doi:10.1016/j.socscimed.2010.07.024.

Pullum, T.W. (2004). Natality. Measures based on censuses and surveys. In: Siegel, J.
and Swanson, D. (eds.). The Methods and materials of demography. Amsterdam:
Elsevier: 407-428.

Salihu, H.M., Ibrahimou, B., August, E.M., and Dagne, G. (2012). Risk of infant
mortality with weekend versus weekday births: A population-based study. The

http://dx.doi.org/10.1093/ije/dyi025
http://lab.demog.berkeley.edu/socsim/socsimOversimplified.pdf
http://dx.doi.org/10.1186%2F1472-6963-12-87
http://dx.doi.org/10.1186%2F1472-6963-12-87
http://dx.doi.org/10.1136%2Fadc.2002.023408
http://www.londonhp.nhs.uk/wp-content/uploads/2011/09/AES-Case-for-change_September-2011.pdf
http://www.londonhp.nhs.uk/wp-content/uploads/2011/09/AES-Case-for-change_September-2011.pdf
http://dx.doi.org/10.1136/bmj.c3498
http://dx.doi.org/10.1016%2Fj.socscimed.2010.07.024

Willekens: Chronological objects in demographic research

676 http://www.demographic-research.org

Journal of Obstetrics and Gynaecology Research 38(7): 973-979.
doi:10.1111/j.1447-0756.2011.01818.x.

SAS Institute (2008). SAS/STAT 9.2 User’s guide. The PHREG procedure (Book
Excerpt). Cary, NC: SAS Institute.

Sobotka, T., Winkler-Dworak, M., Testa, M.R., Lutz, W., Philipov, D., Engelhardt, H.,
and Gisser, R. (2005). Monthly estimates of the quantum of fertility: Towards a
fertility monitoring system in Austria. Vienna Yearbook of Population Research
3: 109-141.

St.Clair, P., Bugliari, D., Campbell, N., Chien, S., Hayden, O., Hurd, M., Main, R.,
Miu, A., Moldoff, M., Panis, C., Pantoja, P., Rastegar, A., Rohwedder, S.,
Oshiro, M., and Zissimopoulos, J. (2011). RAND HRS data documentation,
Version L. Santa Monica, CA: RAND Center for the Study of Aging.
http://hrsonline.isr.umich.edu/modules/meta/rand/randhrsl/randhrsL.pdf
(Accessed January 16, 2013).

Stata (2009). Stata survival analysis and epidemiological tables reference manual.
Release 11. College Station. TX: StataCorp.

Therneau, T.M. and Grambsch, P.M. (2000). Modeling survival data. Extending the
Cox model. New York: Springer.

Therneau, T.M. and Lumley, T. (2012). survival: Survival analysis, including penalised
likelihood. R package. (Version 2.37-2). http://cran.r-project.org/web/packages/
survival/index.html (Accessed January 16, 2013).

Therneau, T.M., Lumley, T., Halvorsen, K. and Hornik, K. (2012). date: Functions for
handling dates. R package. (Version 1.2-33). http://cran.r-project.org/
web/packages/date/index.html (Accessed January 16, 2013).

Wachter, K.W., Blackwell, D., and Hammel, E.A. (1997). Testing the validity of
kinship microsimulation. Mathematical and Computer Modeling. 26(6): 89-104.
doi:10.1016/S0895-7177(97)00172-6.

Willekens, F. (2012). Biograph: Explore life histories. R package. (Version 2.0.2).
http://cran.r-project.org/web/packages/Biograph/index.html (Accessed January
16, 2013).

Wilson, B. and Smallwood, S. (2007). Understanding recent trends in marriage.
Population Trends 128: 24-32.

http://dx.doi.org/10.1111/j.1447-0756.2011.01818.x
http://hrsonline.isr.umich.edu/modules/meta/rand/randhrsl/randhrsL.pdf
http://cran.r-project.org/web/packages/survival/index.html
http://cran.r-project.org/web/packages/survival/index.html
http://dx.doi.org/10.1016%2FS0895-7177%2897%2900172-6
http://cran.r-project.org/web/packages/Biograph/index.html

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 677

Wuertz, D., Chalabi, Y., Maechler, M. et al. (2012). timeDate: Rmetrics– Chronological
and calendar objects. (Version 2160.97). http://cran.r-
project.org/web/packages/timeDate/index.html (Accessed January 16, 2013).

Zeng, Y. and Gu, D. (2009). Reliability of age reporting among Chinese oldest-old in
the CLHLS datasets. In: Zeng, Y., Poston, D.L., Vlosky, D.A., and Gu, D. (eds.).
Healthy longevity in China. Demographic, socioeconomic and psychological
dimensions. New York: Springer: 61-78.

Zinn, S. and Gampe, J. (2011). The MicMacCore manual. Rostock: Max Planck
Institute for Demographic Research (MPIDR).

http://cran.r-project.org/web/packages/timeDate/index.html
http://cran.r-project.org/web/packages/timeDate/index.html

Willekens: Chronological objects in demographic research

678 http://www.demographic-research.org

Annex

Base R and a number of packages in the Comprehensive R Archive Network (CRAN)
(http://cran.r-project.org/) offer useful R functions for operations on dates. In this paper,
date functions of Base R and of the packages lubridate and Biograph are used. The
package lubridate (Grolemund and Wickham 2011, 2012) contains functions to identify
and parse date-time data, extract and modify components of a date-time (years, months,
days, hours, minutes, and seconds), perform accurate math on date-times, handle time
zones and Daylight Saving Time. A particularly useful feature is the distinction
between time units of fixed length and time units of variable length, and the associated
four time-related objects: instant, interval, duration and period. Biograph (Willekens
2012) is designed to facilitate the descriptive and statistical analysis of life histories. It
follows a multistate perspective on the life course and conceptualizes the life course as
a sequence of states and transitions between states (events). Transitions are governed by
transition rates estimated from transition data. Transition rates vary with age and may
depend on covariates.

Table A shows date functions used in this paper. For each function the following
information is provided: name, package that includes the function, main task, and an
example.

Table A: Functions in R for operations on dates (used in the paper)
Function Package Task Example

as.Date Base R Converts character or
numeric representations of
dates into dates

as.Date("2010-02-25")
as.Date(14665,origin="1970-01-01")

ISOdate Base R Creates date-times from
numeric representations

ISOdate (2012,02,25,0,0,0,
 tz="UTC")

as.POSIXtl Base R Converts objects into dates
and manipulates the objects

as.POSIXlt ("2010-02-25 00:00:00")

strptime
strftime

Base R Converts between character
representations of dates and
objects of classes POSIXlt
and POSIXct

strptime("25feb2010","%d%b%Y")

difftime Base R Computes length of time
interval between two dates

difftime(as.Date("2007-07-12"),
as.Date("1977-07-12"))

format Base R Converts between character
representations of dates and
objects of class "Date"

format (
as.POSIXct("2013-06-20 15:00",

tz="Europe/Berlin"),
tz="America/New_York",usetz=TRUE)

http://cran.r-project.org/

Demographic Research: Volume 28 Article 23

http://www.demographic-research.org 679

Table A: (Continued)
Function Package Task Example

Date_as_cmc Biograph Converts date object
into Century Month
Code

Date_as_cmc(
as.Date("2010-02-25"))

Date_as_year Biograph Converts date object
into decimal year

Date_as_year(
as.Date("2010-02-25"))

Date_as_age Biograph Converts date into
age, given date of birth

Date_as_age ("2010-02-25",
format.in="%Y-%m-%d",born=

"1983-07-17")
age_as_Date Biograph Converts age into

calendar date, given
date of birth

age_as_Date (30,
born="1983-03-17",

format.born="%Y-%m-%d",
format.out="%d-%b-%y")

age_as_year Biograph Converts age into
decimal year, given
date of birth

age_as_year(30,born="1983-07-
17",format.born="%Y-%m-%d")

cmc_as_Date Biograph Converts Century
Month Code into
calendar date

cmc_as_Date (x=555,selectday=1)

cmc_as_year Biograph Converts Century
Month Code into
decimal year

cmc_as_year (1322)

year_as_cmc Biograph Converts decimal year
into Century Month
Code

year_as_cmc(2010.084932)

year_as_Date Biograph Converts decimal year
into calendar date

year_as_Date (x=2010.150685,
format.out='%d-%m-%Y')

dmy lubridate Parses dates
according to the order
that year, month, and
day elements appear
in the input

dmy (17022010)

new_interval lubridate Creates interval object
with specified start
date and end date

new_interval (
as.Date ("2009-01-30"),
as.Date("2012-02-25"))

as.period lubridate Changes interval,
duration, difftime and
numeric class objects
to period class objects
with the specified units

span <- new_interval(
as.Date("2009-01-30"),
as.Date("2012-02-25"))

as.period (span,unit="year")

Willekens: Chronological objects in demographic research

680 http://www.demographic-research.org

Table A: (Continued)
Function Package Task Example

as.duration lubridate Converts interval
object into duration
object

f=new_interval (
as.Date ("2009-01-30"),
as.Date("2012-02-25"))

as.duration (f)
diffBetweenDates MicMac Computes difference

between dates in
years

diffBetweenDates ("2010-02-25",
"1990-07-17")

LeapYear MicMac Determines whether a
year is a leap year
(TRUE / FALSE)

LeapYear (2008)

dateTransformation MicMac Transforms birth times
and transition times
into calendar dates

Designed for MicMac input date file

	1772_titlepage_new
	Table of Contents

	1772_Draft 3_ after corrections
	Chronological objects in demographic research
	Abstract
	1. Introduction
	2. Chronological objects: overview
	3. Objects of class “Date” or class POSIX
	4. Date as elapsed time since reference point in time
	5. Date as elapsed time since reference event
	6. Illustrative applications
	7. Conclusion
	8. Acknowledgements
	References
	Annex

