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Shaping human mortality patterns through intrinsic and extrinsic 

vitality processes 

Ting Li
1
 

James J. Anderson
2
 

Abstract 

BACKGROUND 

While historical declines in human mortality are clearly shaped by lifestyle and 

environmental improvements, modeling patterns is difficult because intrinsic and 

extrinsic processes shape mortality through complex stochastic interactions. 

 

OBJECTIVE  

To develop a stochastic model describing intrinsic and extrinsic mortality rates and 

quantify historical mortality trends in terms of parameters describing the rates. 

 

METHODS  

Based on vitality, a stochastic age-declining measure of survival capacity, extrinsic 

mortality occurs when an extrinsic challenge exceeds the remaining vitality and 

intrinsic mortality occurs with the complete loss of vitality by aging. Total mortality 

depends on the stochastic loss rate of vitality and the magnitude and frequency of 

extrinsic challenges. Parameters are estimated using maximum likelihood. 

 

RESULTS  

Fitting the model to two centuries of adult Swedish period data, intrinsic mortality 

dominated in old age and gradually declined over years. Extrinsic mortality increased 

with age and exhibited step-like decline over years driven by high-magnitude, low-

frequency challenges in the 19
th

 century and low-magnitude high-frequency challenges 

in the 20
th

 century. 
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CONCLUSIONS  

The Swedish mortality was driven by asynchronous intrinsic and extrinsic processes, 

coinciding with well-known epidemiological patterns involving lifestyle and health 

care. Because the processes are largely independent, predicting future mortality requires 

projecting trends of both processes. 

 

COMMENTS  

The model merges point-of-view and classical hazard rate mortality models and yields 

insights not available from either model individually. To obtain a closed form the 

intrinsic-extrinsic interactions were simplified, resulting in biased, but correctable, 

parameters estimates. 

 

 

 

1. Introduction  

Demographers have suggested that it is advantageous to view mortalities in biologically 

meaningful categories. A simple but intuitive structure is to envision mortality 

processes along an intrinsic/extrinsic gradient that ranges from processes within the 

individual to processes originating from the environment (Carnes et al. 2006; Carnes et 

al. 1997; Carnes et al. 1996; Olshansky 2010). Because dealing with a continuum of 

processes is difficult, researchers have suggested partitioning mortality into two 

categories. However, a partitioning is problematic because the factors are not well 

understood and change across age (Bongaarts 2006; Olshansky et al. 1990). 

Nevertheless, endpoints along the gradient seem evident: death resulting from a 

catastrophic injury might be classified as pure extrinsic mortality while death from 

extreme old age becomes pure intrinsic mortality. Generalizing from this perspective, 

extrinsic mortalities result from acute environmental challenges to the survival capacity 

of the individual while intrinsic mortalities result from chronic accumulative 

degradation leading to the total loss of the individual’s survival capacity. Complicating 

the partition is the possibility that the two factors may be interdependent. For example, 

an acute disease might be classified as an extrinsic factor if it results in immediate 

death, but if the individual recovers with reduced survival capacity the disease could 

contribute to future intrinsic mortality.  

Irrespective of these difficulties, a reasonable quantitative partition of mortality 

into intrinsic and extrinsic factors has value in assessing the contributions of lifestyle 

and environment in shaping historical patterns of mortality in populations and for 

projecting future trends. However, existing models appear insufficient to quantify an 

intrinsic/extrinsic partition of mortality or explain recent patterns in mortality curves. 



Demographic Research: Volume 28, Article 12 

http://www.demographic-research.org 343 

Indeed, Yashin et al. (2001a) noted “a revision of traditional gerontological concepts” is 

necessary. Of the current suite of models the dominant class, the Gompertz-Makeham  

type, express one mortality rate process as age-dependent and the other process as age-

independent (Gompertz 1825; Heligman et al. 1980; Makeham 1860; Siler 1979; 

Strehler et al. 1960; Vaupel et al. 1979; Yashin et al. 2001a). A second “point-of-view”, 

class of models explicitly describes intrinsic mortality through the passage of a hidden 

Markov process, i.e., vitality, to an absorbing boundary representing death (Aalen et al. 

2001; Anderson 2000; Li et al. 2009; Weitz et al. 2001), or in terms of a loss of 

homeostasis (Yashin et al. 2000). However, in this class, extrinsic processes, when 

considered, are independent of the intrinsic process and also are independent of age. To 

understand historical patterns and address future trends of mortality we propose that the 

dynamics and interactions of intrinsic and extrinsic factors must be formally 

represented. We develop a framework by merging models in which vitality plays a 

central role. We define extrinsic mortality in the sense of the Strehler and Mildvan 

(SM) general theory of aging and mortality (Strehler et al. 1960), in which death results 

when an external challenge exceeds age-declining vitality. We define intrinsic mortality 

in the hidden Markov process sense in which stochastic age-evolving vitality is 

absorbed into a zero boundary representing death. We demonstrate that the historical 

pattern of adult Swedish mortality can be explained in terms of asynchronous trends in 

the rates of intrinsic and extrinsic processes. As an aside, the framework in this paper 

does not address child mortality, which requires additional complexities that can be 

ignored when considering adults. The extension of the framework to include childhood 

mortality will be developed in a separate paper. 

 

 

2. Vitality framework 

Before formally introducing the two-process vitality framework, we start with a brief 

review of its foundational models: the Strehler and Mildvan general theory of aging and 

mortality and the Markov diffusion models. While these models provide important 

bases for a new model, we also illustrate that each type of model alone cannot 

adequately represent adult mortality. 

 

 

2.1 Background models 

The SM theory is perhaps the pioneer work that attempts to relate intrinsic and extrinsic 

forces to mortality. Using an analogy to chemical kinetics (Golubev 2009), the theory 

defines death as resulting from the interaction between the internal energy reserves of 
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the organism and the external energy demands from environmental insults. To be 

specific, the term “vitality” defines the organism’s capacity to remain alive. Vitality 

declines in a linear manner with age (with loss rate  ) and death occurs when a random 

external challenge exceeds the remaining vitality. Challenges occur with frequency   

and a magnitude distribution following a Maxwell-Boltzmann distribution with mean 

magnitude  . The model provides a mechanistic explanation for the exponential 

increase in mortality with age in the Gompertz law (Gompertz 1825) and proposes that 

the two Gompertz parameters are negatively correlated. Consequently, the theory has 

been attractive for decades (Riggs 1990; Riggs et al. 1992; Zheng et al. 2011). 

However, despite its appealing and intuitive elements, the SM theory has several 

limitations. Firstly, since the theory was built on the two-parameter Gompertz law, in 

order to derive the three underlying parameters ( ,   and  ) an ad hoc relationship 

must be established between two of the parameters. This restriction limits the model’s 

ability to disentangle intrinsic and extrinsic effects. Secondly, the essential finding of 

the theory that the Gompertz parameters are negatively log-linear correlated imposes a 

strong regularity on mortality patterns. However, recent mortality curves from both 

period and cohort data exhibit significant deviations from the postulated pattern 

(Krementsova et al. 2010; Yashin et al. 2001b; Yashin et al. 2002). We suggest these 

issues arise because the intrinsic structure of the theory is too simple: specifically, it 

expresses a linear deterministic decline without a stopping process. 

The other method on which our framework is based, the first passage or Markov 

diffusion model, explicitly characterizes the intrinsic process as a stochastic decline in 

vitality to a killing boundary at zero vitality. This concept was first proposed half a 

century ago (Sacher 1956) and developed by others (Aalen et al. 2001; Anderson 1992; 

Anderson 2000; Anderson et al. 2008; Li et al. 2009; Steinsaltz et al. 2004; Weitz et al. 

2001). The model characterizes the time to death by the first passage time of vitality to 

the killing boundary. However, within this framework, the exterior killing from 

instantaneous challenges is either ignored or modeled as a constant age-independent 

rate. 

Both the SM theory and the Markov model are too simple to capture complex 

human mortality patterns. Intuitively, the chance of surviving from an acute external 

challenge may depend on the stability of the biological systems of an organism, which 

is a central concept of the SM theory. Therefore, the idea of further developing the SM 

theory based on the stochastic vitality process emerges naturally. Nevertheless, a 

revised framework simply based on a stochastic version of the SM theory is inadequate. 

A multi-process process-point-of view (Aalen et al. 2001) is required to understand and 

quantify mortality and the aging process, in particular, when considering mortality from 

both chronic and acute damages. 
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2.2 The two-process vitality model 

Our framework is based on the premise, similar to the SM theory and the Markov 

model, that at any moment an individual possesses an amount of vitality, which is a 

measure of survival capacity and can be composed of multiple age-varying components. 

We consider that adult vitality    starting from an initial vitality    and decreasing with 

age  , characterizes the accumulative damage that occurs over life (Anderson 2000). 

Following this framework, we assume that    is a random variable that can be described 

as a Wiener process 

 
   

  
         (1) 

 

where    is a white noise process. By standardizing equation (1) to the initial vitality   , 

the parameters   and   separately represent the fraction of vitality loss and the fraction 

of vitality spread per unit time. Each normalized vitality trajectory starts from a single 

point      and the actual differences in the initial values are reflected in the spread 

term  . To be specific,   reflects the average combined variation from both inherent 

(initial) and acquired (evolving) sources per unit time. Note that, in theory, both   and   

can vary across ages and individuals, but when we apply equation (1) to the entire adult 

lifespan of a population, we represent them as the average rates of vitality loss and 

spread respectively from both a life course perspective (constant with ages) and a 

population perspective (constant within population).  

Death occurs when vitality reaches zero, which occurs in two possible ways: either 

from intrinsic damage accumulation or when a random discrete extrinsic challenge    

momentarily depletes the current store of vitality at time   (Figure 1). Formally, death 

occurs when        . Challenges are a catch-all for stress from a variety of acute 

sources, e.g., disease, starvation, injury, etc. We assume challenges not exceeding the 

current vitality level either do not alter the vitality trajectory or their effects are 

subsumed into   and   and contribute to the lifetime-averaged rate of change of vitality, 

which is not explicitly modeled here. The total population mortality is the combination 

of deaths from both intrinsic and extrinsic sources. However, the age-specific mortality 

rate cannot be simply represented as the intrinsic mortality rate plus the extrinsic rate 

because these two mortality processes interact with each other. We address this issue 

below. 
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Figure 1: The two-process vitality model illustrated. Vitality declines 

stochastically from an initial value of 1. Intrinsic mortality results 

when adult vitality is exhausted, , and extrinsic mortality occurs 

when a random challenge exceeds the remaining vitality, . 

 
 

 

2.2.1 Intrinsic mortality 

The intrinsic mortality rate is governed by a gradual stochastic depletion of vitality over 

the life span according to equation (1). Without extrinsic killings, the first-passage time 

of vitality to the zero boundary is the inverse Gaussian distribution (Chhikara et al. 

1989) 

 

 ( )   
    ⁄

 √  
   ( 

(    ) 

    
)  
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Pure intrinsic survival is 

 

 ( )    ∫ ( )  

 

 

  (
    

 √ 
)     (

  

  
) ( 

    

 √ 
) 

 

where   is the cumulative normal distribution and the intrinsic mortality rate is 

 

  ( )   ( )  ( )⁄  (2) 

 

 

2.2.2 Extrinsic mortality 

The extrinsic mortality rate depends on both the challenge occurrence rate and the 

challenge magnitude   drawn from a cumulative distribution  ( ), i.e.,       . 
Assume that the occurrence of challenges follows a Poisson process with rate  ( ), 

such that a challenge at age   does not depend on the previous history of challenges 

(Finkelstein 2007, 2008). Also, as in the SM theory, we assume challenges have a 

Maxwell-Boltzmann distribution such that most challenges are small and the 

probability of large challenges declines with magnitude (Strehler et al. 1960). Then the 

magnitude distribution is exponential and   characterizes the mean challenge 

magnitude 

 

 ( )        ⁄  (3) 

 

Let  ( ) denote the realization of the random vitality process   , then the conditional 

extrinsic mortality rate is  

 

  (  ∣∣     ( ) )    ( )       ( )   ( ) (   ( ( )))   ( )   ( )  ⁄ . 

 

Integrating over vitality states, the population-level extrinsic rate is  

 

  ( )  ∫   (  ∣∣    )  ( )   

 

 

 (4) 

 

where the age-dependent distribution of vitality in the population   ( ) depends on 

both the loss of vitality through the Wiener process and its modification by the 

preferential elimination of low-vitality individuals because of the extrinsic challenges. 
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2.2.3 Total mortality – numerical model 

Although the challenge process is assumed to be independent of the vitality process, the 

postulation that the extrinsic killing rate depends on the vitality level still evokes 

interactions between the intrinsic and extrinsic process. Therefore, the total mortality as 

the combination of the intrinsic and extrinsic deaths is not simply the sum of equations 

(2) and (4), but tends to carry some complexity due to the interactions of death 

processes. There is no analytical solution for the modified distribution of the Wiener 

process   ( ) with the presence of extrinsic mortality and therefore for the total 

mortality rate. However, we can generate empirical mortality curves through 

microsimulation, which is a technique that numerically derives the average macro-level 

characteristics from repeated simulations at the individual level (Manton et al. 2009). In 

our case, we simulate thousands of individuals, each of which possesses its own vitality 

trajectory following the Wiener process with age (see Appendix for details). 

Independently, a Poisson process is generated to represent the random challenges with 

an exponentially distributed magnitude for each individual. The extrinsic death 

probability at age   is calculated as the proportion of individuals for which the 

magnitude of a random challenge exceeds their vitality levels in the interval        . 
Correspondingly, the intrinsic death probability in the interval is the proportion of 

individuals whose vitalities reach or pass through the zero-boundary. When either 

extrinsic or intrinsic death occurs, the individual’s vitality trajectory is stopped and the 

time to death recorded. The parameters  ,  ,    and   can be prescribed with any 

appropriate values, and in a more general sense all parameters can vary with age to 

yield nonhomogeneous processes in the simulation context. This approach generates 

age-specific mortality curves that fit empirical data. We refer to this as the numerical 

form of the model, or simply the “numerical model.”  

Generating survival curves with the numerical model is computationally expensive 

and currently the approach is not amendable to estimation of parameters. Therefore, 

below we develop an analytical approximation to the vitality theory, i.e., the two-

process vitality theory, amenable to parameter estimation. Then we correct the bias in 

parameters by fitting the modified model to survival curves generated by the numerical 

model. 

 

 

2.2.4 Total mortality – modified model 

To develop an approximate solution to the two-process vitality model, first assume that 

the extrinsic mortality depends on the mean vitality  ̅( ) instead of the random variable 

  . That is, we replace  ( ) by the mean vitality  ̅( ) in equation (3) giving 
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 ̃ (  ∣∣  ̅( ) )   ( )   ̅( )  ⁄  (5) 

 

Next, note that to a first order the expected value of vitality according to equation (1) 

evolves linearly with age (Anderson et al. 2008) giving  

 

 ̅( )              (6) 

 

where    is the initial vitality and in the normalized case is unity. Then the conditional 

extrinsic mortality defined by equation (4) becomes independent of the distribution of 

vitality and   ( ) integrates to 1. Further, assuming the Poisson challenge process is 

homogeneous, i.e.,  ( )   , and then including equations (5) and (6) in (4), the 

modified extrinsic mortality rate is 

 

 ̃ ( )     (    )  ⁄  (7) 

 

where   is the fraction of vitality loss per unit time and   and   are the frequency 

(occurrence rate) and the average magnitude of challenges. Equation (7) implies that at 

each age all individuals are subjected to the same average extrinsic killing force and 

hence the presence of extrinsic mortality does not change the vitality distribution 

resulting from the original Wiener process. With the sacrifice of randomness in 

extrinsic killing, the intrinsic and extrinsic mortality processes become independent of 

each other. Population heterogeneity is then only reflected in the intrinsic killing. Under 

these assumptions, the modified model for total mortality is the sum of equations (2) 

and (7) as 

 

 ̃( )       ̃   
    ⁄  (    )      ⁄

 √  ( (
    

 √  
)        ⁄  ( 

    

 √  
))

    (    )  ⁄  
(8) 

 

where the total rate of mortality depends on the intrinsic rate defined by   and   and the 

extrinsic rate defined by   and  . As an aside, extrinsic mortality, the last term 

equation (8), is equivalent to the SM interpretation of age-dependent mortality in the 

Gompertz law where the SM environmental deleterious factor   has the same meaning 

as  , the random event frequency   is equivalent to    and the vitality loss rate 

coefficient   is equivalent to  . 
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2.3 Fitting the model to data  

In review, while the two-process theory cannot be expressed in a closed form, by 

assuming that the intrinsic and extrinsic processes work independently and that vitality 

in the extrinsic process is linear and non-stochastic, we are able to derive a close form 

of total mortality that can be fitted to data-yielding parameter estimates. The close form 

comes at a cost: the probability distribution describing intrinsic mortality does not 

account for the selective removal of lower vitality individuals by challenges, and the 

vitality used in the extrinsic mortality becomes negative at old age. Clearly, the 

modified form of the model cannot produce mortality patterns identical to patterns 

produced by the numerical model, but whether the modified model is sufficient depends 

on the task being addressed. In this paper we consider the adequacy of the modified 

model in three specific tasks: 1) comparing parameters across period years, 2) 

characterizing intrinsic and extrinsic mortality patterns with age, and 3) comparing the 

model to another model. In sections 2.3.1 – 2.3.3 we outline the methods for these 

assessments and report results in sections 3.1 – 3.3. 

 

 

2.3.1 Parameter estimates 

The first step in all tasks is developing unbiased estimates of model parameters. To 

estimate the bias-corrected parameters  ,  ,    and   for the modified model we first 

estimate biased parameters by fitting equation (8) to adult mortality curves (≥ 20 age) 

with a maximum-likelihood fitting routine (Salinger et al. 2003)
3
. We refer to these 

estimates as the biased parameters ( ̂  ̂  ̂  ̂). To develop bias corrections we simulate 

survival curves (see Appendix, Numerical simulation) using a range of “true 

parameters” centered over the biased parameters. We then fit the simulate mortality 

data with equation (8) to estimate biased parameters and develop regressions relating 

the true parameters to the biased parameters (see Appendix, Biases and corrections). 

Corrections to adjust biased parameters to real parameters are 

 

    
 ̂

          ̂
     

 ̂

            ̂
     

 ̂

           ̂
     

 ̂

          ̂
   (9) 

 

where the biased parameters are slightly low for   and   and slightly high for   and  . 

 

                                                           
3 R code for estimating parameters is available at http://CRAN.R-project.org/package=vitality. The package 

has several model forms. In this paper we used the model estimating  ,  ,    and . For additional models also 

see http://www.cbr.washington.edu/vitality/. 
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2.3.2 Comparing age-dependence mortality patterns of models 

To compare age-dependent patterns of intrinsic and extrinsic mortality generated by the 

modified model to those generated by the numerical model, we require numerical 

model parameter estimates that are functionally equivalent to the estimates for the 

modified model. First, we fit the modified model (equation 8) to period year mortality 

data and correct the parameters using equation (9). Second, we numerically simulate a 

mortality curve (see Appendix, Numerical simulation) based on these parameters. 

Third, we adjust the parameters within a small range, repeat the simulation, and 

continue the process until we find a set that yields a localized minimum root mean 

square error (RMSR) between the simulated mortality curve and the original data. In the 

simulations, trajectories of the two mortality components are generated from death 

numbers from intrinsic and extrinsic sources at each time interval. 

 

 

2.3.3 Survival curve comparison 

We compare the age-dependent patterns of mortality in the modified model with the 

three-parameter logistic model, which is the standard, low-parameter model for 

describing adult mortality (Thatcher 1999). The logistic model is  ( )    
 

         

where   and   are Gompertz parameters and   is the Makeham term. The logistic 

model parameters are fit with the nonlinear least squares (nls) routine in R. 

 

 

2.4 Application issues  

Before moving on to the Results section, two important issues on the application of the 

model need to be considered. 

 

 

2.4.1 Chronic vs. acute sources of mortality 

The first issue relates to the distinction between intrinsic and extrinsic mortality. 

Although we identify two death processes, we do not infer that one form is purely 

caused by intrinsic forces while the other is only from extrinsic forces. In the theory, the 

occurrence of extrinsic death already depends on the intrinsic vitality, and intrinsic 

process can in principle be modified by nonlethal challenges. Despite the fact that we 

do not directly model these effects, we note that the estimate of parameter r reflects 
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challenges that increase the rate of vitality loss but do not result in immediate death. 

However, it is extremely difficult to distinguish the independent contributions of pure 

aging and pure environment changes to the loss of vitality (Carnes et al. 2006). Instead 

of seeking elusive distinctions between intrinsic and extrinsic causes of death, the 

model establishes a mathematically concise but admittedly imperfect partition in which 

both types of mortality are both age- and environment-related. A critical point is that 

extrinsic mortality is assumed to result from acute challenges that instantaneously drain 

the survival capacity of the individual, while intrinsic mortality is assumed to result 

from the chronic incremental losses of survival capacity to the point where it is simply 

exhausted. Of course, acute challenges that do not cause mortality can be manifested as 

chronic incremental losses of survival capacity, which thus links the two forms of 

mortality. We believe this approach provides insight into how historical changes in the 

environment and human health care shape mortality patterns, as well as offering a route 

to predict future mortality patterns. 

 

 

2.4.2 Cohort data vs. Period data 

It has been argued that process-based survival models, such as the SM model, were 

designed for modeling cohort data (Yashin et al. 2002). Nevertheless, such models are 

also applied to period data and issues arise in both cases. The two-process vitality 

model provides a perspective in which to interpret biases resulting from the way period 

and cohort data violate the model assumptions. First, note that while  ,  ,    and   are 

constant in the model, implying processes are homogeneous over either cohort or period 

data, in fact the underlying processes change over time; otherwise mortality patterns 

cannot change across years, which is demonstrably not the case (Oeppen et al. 2002; 

Vaupel 2010). The assumption that the intrinsic parameter   is constant within a cohort 

has support in studies of cellular degradation, which approximately proceeds in a 

constant linear manner independent of age (Passos et al. 2005). However,   is likely to 

change across cohorts due to ever changing nutrition levels and living standards. In 

contrast, the extrinsic parameters, which reflect the effects of the environment on 

mortality, can reasonably be assumed to be constant in a specified period year but 

variable from one period year to another. Thus intrinsic parameters estimated from 

period data represent weighted averages from the cohorts comprising the period, while 

the extrinsic parameters estimated from cohort data represent weighted averages of 

environmental conditions comprising the cohort. Since intrinsic parameters are mostly 

of biological origin we expect they change slowly across cohorts, while the extrinsic 

parameters, based on environmental conditions, are expected to change more rapidly 

(Horiuchi et al. 1990). Thus we hypothesize that, overall, period data parameters are 
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more reflective of underlying processes than are parameters estimated from cohort data. 

We evaluate this prediction in the results section. In support of this hypothesis, a study 

comparing predictions of cancer mortality from period and cohort data found that the 

period data was a more accurate predictor of future rates (Brenner et al. 2008). 

 

 

3. Results 

We illustrate the ability of the model to fit period adult survival data using Swedish 

survival data from 1800 to 2007 downloaded from the Human Mortality Database, 

University of California, Berkeley (USA), and Max Planck Institute for Demographic 

Research (Germany). Available at www.mortality.org or www.humanmortality.de (data 

downloaded on 1/1/2010). All survival data are left-truncated at age 20 to exclude the 

child mortality processes. 

 

3.1 Period survival curves 

Model fits to Swedish female adult mortality data for the years 1820 and 2000 from the 

modified form of the model are illustrated in Figures 2A and 2C and fits with the 

numerical form of the model are illustrated in Figure 3. Note that the modified model 

curves are generated by fitting equation 8 with the maximum-likelihood routine, while 

the numerical model fits were obtained by searching the parameter space about 

parameters from Figure 2 after correcting for bias according to equation 9. Figure 2 

parameters are the best global fit to the data while Figure 3 parameters represent the 

best fit to the data in the local parameter space.  

The general patterns of the contributions of intrinsic and extrinsic mortality 

processes are the same with both forms of the models. Extrinsic mortality dominates the 

early portion of the curves and increases exponentially (linear in log space) in the 

modified model (Figures 2A, C) and asymptotes at old age in the numerical model 

(Figure 3). The extrinsic components for year 1820 have relatively shallow slopes, 

indicating that the extrinsic mortality rate has little age variation. In comparison, for 

year 2000 the extrinsic components rise steeply from low values in youth to high values 

at old age. In both model forms the intrinsic rates increase rapidly and equal or exceed 

the extrinsic rate at age 70 for the 1820 period and age 90 for the 2000 period. This 

difference in curves results because   in 2000 is 30% smaller than in 1820. Finally, 

intrinsic mortality curves all approach a plateau at old age due to the Wiener-process 

nature of intrinsic mortality (Li et al. 2009; Weitz et al. 2001). 

The main difference in the two model forms occurs after the intrinsic-extrinsic rate 

crossover age when the extrinsic rate begins to asymptote in the numerical model while 
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it continues to increase exponentially in the modified model. These differences result 

because, unlike in the numerical model, the modified model does not account for the 

removal of lower vitality individuals prior to old age. Thus extrinsic challenges act on a 

higher proportion of low-vitality individuals in the modified model than in the 

numerical model. In essence, with the numerical model, individuals surviving into old 

age have higher vitality than is predicted in the modified model. 

 

 

3.2 Comparison of models  

We compare the age-dependent patterns of mortality in the modified model with the 

three-parameter logistic model using adult Swedish female data for period years 1820 

and 2000. Using the approach in a root-mean-squared-error (RMSE) comparison (Gage 

et al. 1993), fits to the modified model (Figure 2A and C) and the logistic model 

(Figure 2B and D) were similar for 1820, RMSE.vitality = 0.11 vs. RMSE.logistic = 

0.12, but the logistic mortality model fits significantly worse for 2000 RMSE.vitality = 

0.20 vs. RMSE.logistic = 0.31, p-value from the F test < 0.001(Gallant 1987). 

The logistic model underestimates the rate in middle age and slightly 

overestimates the rate in early old age, which is consistent with the finding from 

Bongaarts (2006) that the logistic model exhibits systematic deviations from real data, 

especially for the recent 50 years. We suggest that the logistic model’s failure to fit the 

pattern in later years stems from its inflexibility to adjust the age at which the rate of 

mortality accelerates, i.e., the upward bending at age 55 in 1820 and age 75 in 2000. In 

comparison, in the two-process vitality model the transition point depends essentially 

on the rate of loss of intrinsic vitality, which is essentially independent of the extrinsic 

mortality processes. In summary, although the modified form of the two-process vitality 

model has one more parameter than the logistic model, it accommodates the progressive 

shift in the shape of the mortality curve across two centuries and explains the 

phenomenon in terms of the reduction in the rate of vitality loss across years. 

Essentially, the four-parameter two-process vitality model successfully fits mortality 

across years through changes in intrinsic and extrinsic mortality processes, while the 

three-parameter logistic model is unsuccessful because the partitioning of mortality into 

age-independent and dependent parts is not biologically realistic. 
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Figure 2: Period adult mortality rate data (dots) of Swedish females for 1820 

and 2000. (A) and (C): Model fits from the modified vitality model 

(equation 8). Modeled total mortality rate is depicted by red solid 

lines. Green dotted and blue dashed lines depict mortality compo-

nents    and   . Model parameters are   = 0.017,   = 0.019,   = 

0.063,   = 0.423 for year 1820 and    = 0.013,    = 0.011,   = 0.148,   

= 0.139 for year 2000. (B) and (D): Logistic model fit depicted by red 

solid lines. 
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Figure 3: Period adult mortality rate data (dots) of Swedish females for 1820 

and 2000. Model fits from the numerical form of two-process vitality 

model. Modeled total mortality rate is depicted by red solid lines. 

Green dotted and blue dashed lines depict mortality components    

and   . Model parameters are   = 0.0174,   = 0.015,   = 0.062,   = 

0.426 for year 1820 and   = 0.0138,   = 0.007,   = 0.118,   = 0.143 for 

year 2000.  

 
 

 

3.3 Historical patterns in survival 

Here we demonstrate that the extraordinary improvements in human longevity (Riley 

2001) across two centuries can be explained in terms of asynchronous across-year 

changes in the patterns of intrinsic and extrinsic process as characterized by the model 

parameters. Noting that   is the rate of decline of vitality with age, and therefore a 

measure of the rate of aging, and the progressive decline in   for both males and 
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history. Studies suggest that improved nutrition and shelter associated with agrarian and 
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Schofield 1991; Sundin et al. 2007), and thus are plausible mechanisms underlying the 

historical change in  . By inference, the accelerated rate of decline of   about 1940 
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reflects a period of accelerated improvements in living conditions. Notably, after 1960 

  is higher in males than in females.  

The intrinsic rate variability   is a measure of heterogeneity in the rate of aging in 

the population. In the females,   declines slowly over the 19
th

 century, stabilizes in the 

first half of the 20
th

 century, and, after a brief increase about 1950, declines in the late 

20
th

 century. The trend in males follows the female trend until 1950, at which time   

increases significantly through 1980 and then rapidly declines, suggesting a rapid 

increase and then decrease in the heterogeneity of aging in the male population (Figure 

4B). This anomaly coincides with class-stratified differences in smoking rates in adult 

males over this 30-year span (Diderichsen 1990; Diderichsen et al. 1997). Additionally, 

the increase in   between 1950 and about 1970 may reflect early effects of 

modernization, e.g., pollution and carcinogens (Crimmins 1981). Together   and   

quantify the fundamental contributions of living conditions and health-related behaviors 

in shaping the pattern of intrinsic mortality in Sweden. 

The extrinsic mortality, which is driven by environmental factors, exhibits three 

stages over the two-century record. In the first stage, up through 1920, the mean 

magnitude of environmental challenges   (Figure 4C) is highly variable, plausibly 

resulting from variable environmental conditions associated with epidemics, 

fluctuations in food abundance, and climate. For example, spikes in   in 1808 and 1918 

respectively correspond with disease outbreaks associated with the Finnish war (Mielke 

et al. 1989) and the influenza pandemic (Sundin et al. 2007). The second stage, a 

decline in  between 1920 and 1950, corresponds with a period in which many 

infectious diseases were controlled or eradicated (Omran 2005; Riley 2001). 

Improvements in health care that increased recovery rates from acute diseases 

(Finkelstein 2005) could also contribute to the decline. In the third stage, from 1950 

onward, a low and stable   reflects near elimination of high-magnitude challenges. 

Also noteworthy,   is higher in 19
th

 century females than males, which reflects 

preferential allocation of health resources to men at that time (Humphries 1991; Klasen 

1998) as well as higher maternal mortality (Sundin et al. 2007). 

The historical pattern of challenge frequency   (Figure 4D) follows a trend almost 

inverse to that of the challenge magnitude, except at mid-century (1945-1955) when the 

challenge frequency exhibits a sudden increase (Figure 4C). This general inverse 

relationship, in which low-frequency high-magnitude challenge events dominate the 

19
th

 century and high-frequency low-magnitude events dominate the 20
th

 century, is the 

model’s manifestation of the well-known epidemiological transition (Omran 2005) in 

which medical advancements greatly reduced the magnitude of many disease 

challenges. In the transition some previously fatal diseases were either eliminated or 

became less lethal. The inverse pattern might also involve an increase in the frequency 

of environmental stressors associated with modernization, such as increasing 
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environmental pollution and carcinogens, car accidents (Crimmins 1981), and exposure 

to disease related to public transportation, e.g., air and subway travel (Colizza et al. 

2006).  

The inverse pattern of   and   also alters the effect of extrinsic challenges with 

age. The 19
th

 century high-magnitude challenges affect both young high-vitality 

individuals and old low-vitality individuals, resulting in a flatter extrinsic mortality 

curve (Figure 2A), while the 20
th

 century low-magnitude challenges affect mostly old 

individuals with low vitality, resulting in a steeper curve (Figure 2C). Also note that 

across two centuries the challenge frequency  is 20% less for females than males, 

which agrees with measured risk-taking differences between the sexes (Byrnes et al. 

1999). 

While the well-documented epidemiological transition provides a reasonable 

explanation of the general inverse pattern of   and  , the rapid mid-century (1945-

1955) increase in challenge frequency requires further consideration (Figure 4D). It 

seems unlikely that the frequency of extrinsic challenges would more than triple over a 

single decade, so we use model simulation to explore the effect further (Appendix). We 

simulate mortality curves corresponding to the decade using a mixture of two challenge 

types: high-magnitude challenges (  ) to represent infectious diseases prior to the 

epidemiological transition and low-magnitude challenges (  ) prevalent both prior to 

and after the transition. We represent the epidemiological transition as a decrease in the 

frequency of high-magnitude challenges from    to 0 while keeping the frequency of 

low-magnitude challenges constant at   . This mixture of challenges violates the 

assumptions of the SM theory, in which the distribution of challenge magnitude is 

represented by a single exponential distribution that is independent of challenge 

frequency. Fitting the modified model to these simulated mortality curves reveals 

estimates of r and s are not significantly affected by variations in the frequency of high-

magnitude challenges. However, estimates of   and   are significantly biased to the 

high-magnitude challenge parameters when high-magnitude challenges dominate. 

Furthermore, when the frequency of the high-magnitude challenge drops below the 

critical frequency   
         ⁄  the parameters estimates rapidly approach the 

parameter values of the low-magnitude challenges (Figure A2 C). This analysis 

suggests that the model exhibits an attractor-like dynamic that switches suddenly to the 

dominant challenge processes. From this perspective the three-fold increase in 

challenge frequency between 1945 and 1955 likely is associated with a gradually 

declining frequency of high-magnitude challenges passing the critical frequency 

threshold. 
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Figure 4: Longitudinal patterns of bias-corrected vitality parameters for the 

Swedish population period data (age 20-110) over the years 1800-

2007. Male and female patterns are depicted as solid (black) and 

dashed (red) lines respectively. Shaded areas indicate variation for 

the corrected parameters derived from bootstrapping (Appendix). 

(A) vitality loss (yr 
1

), (B) variation of vitality loss rate (yr 
1/2

), (C) 

average challenge magnitude, (D) average challenge frequency 

(yr 
1

). Dotted lines denote uncorrected parameters. 
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4. Comments 

Demographic models of mortality have evolved, like species clades, from distinct 

conceptual foundations. The oldest clade, originating with Gompertz (1825), focuses on 

the mortality event itself as expressed through the hazard rate, and the issue is how the 

rate changes with age. The younger clade, beginning with Sacher (1956), takes a 

process point-of-view focusing on the processes leading up to death. The two clades 

have strengths and weaknesses. The hazard rate clade’s strength is through its 

simplicity and flexibility in characterizing age-dependent mortality, but it is weak in its 

difficulty in representing heterogeneity in survival capacity. The process point-of-view 

clade is weak in its representation of extrinsic events but strong in its stochastic 

representation survival capacity. In this paper we develop a framework that merges the 

fundamental processes of both clades into a single framework, one process describing 

extrinsic mortality in terms of external challenges to vitality and one process describing 

intrinsic mortality as the absorption of vitality into a zero boundary.  

Vitality, the abstract stochastic measure of survival capacity, is the shared currency 

for both processes, which leads to conceptual and mathematical challenges in 

formulating a tractable low-parameter model. Challenges preferentially kill low vitality 

individuals and therefore the vitality distribution determining intrinsic mortality is 

affected by extrinsic processes. Additionally, challenges not resulting in death affect the 

rate of loss of vitality, further affecting intrinsic processes. A focus of our paper has 

been to decouple this interaction while retaining important properties of the framework. 

We proceeded in three stages. We first developed the conceptual framework, which has 

no closed-form mortality equation but which is amenable to numerical simulation. 

Next, we derived a close-form model that decouples the intrinsic and extrinsic 

processes. Third, we compared the close-form model to the numerical simulations to 

correct for the biases resulting from decoupling the processes. The final modified model 

contains only four parameters and is suitable for analysis of empirical data in estimation 

algorithms. Furthermore, mortality rate deviations from classical exponential increases 

are readily explained by simple biologically realistic intrinsic and extrinsic processes.  

With the resulting two-process vitality model, the historical trend in Swedish 

mortality can be explained by across-year patterns in the four parameters. The historical 

decline in the rate of intrinsic mortality, characterized by  , occurred in two stages 

corresponding with improvements in living conditions over two centuries. The rate of 

decline in extrinsic mortality, characterized by   and  , occurred in three stages 

corresponding with the epidemiological transitions between the 19
th

 and 20
th

 centuries. 

Short-lived pandemics are reflected in the challenge magnitude   and the demographic 

effect of smoking is reflected in the intrinsic heterogeneity parameter  . 
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The vitality framework has considerable flexibility, but to obtain a tractable model 

the framework must be simplified, resulting in conceptual and parameter estimation 

issues. For example, estimates of the extrinsic mortality parameters are highly sensitive 

to deviations of challenges from a Maxwell-Boltzmann distribution. This is particularly 

critical if the nature of environmental challenges change quickly, such as might be 

expected with climate change. Other issues need further consideration. Clearly, 

nonlethal injuries and disease affect vitality, and therefore longevity, but the model 

ignores such interactions. Also, the framework currently is not applicable to early life 

development where vitality is expected to increase instead of decline. Notwithstanding 

these limitations, the simplicity in characterizing intrinsic and extrinsic mortality 

processes by four parameters offers considerable insight into what shapes patterns of 

mortality. We suggest that models that do not explicitly represent both intrinsic and 

extrinsic processes are inadequate to understand historical mortality patterns and predict 

future patterns. Thus, in summary, we believe that a vitality-based theory offers a 

rigorous and tractable framework which links these processes. 
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Appendix  

Evaluating model parameter bias: We conducted microsimulation to evaluate the 

modified model, which expressed by equation (8) assumes that the effect of the 

extrinsic challenge can be represented by an approximation of the mean vitality at age 

 . Survival curves were generated according to a vitality process defined by equation 

(1) with pre-assigned parameters in which extrinsic process kills individuals according 

to their actual vitality level and otherwise mortality occurs at the zero boundary. The 

modified model was then fitted with the numerically generated curves to obtain 

estimated parameters, which were then compared to the true parameter values for 

assessing the bias inherent in the modified model.  

Numerical simulation: Survival curves were simulated from the vitality process 

defined by equation (1). Each population member was assumed to have a vitality of 1 at 

age 0. The vitality for each individual was calculated for a single age step as 

 

                                 (A1) 

 

where    is an increment of the Weiner process simulated by a random number from a 

unit normal distribution N[0,1]. Note that this generation uses a simplified random walk 

with drift to approximate the continuous Wiener process. From (A1), 10,000 vitality 

trajectories were generated to represent a population. At each age  , deaths from 

intrinsic and extrinsic process were recorded. Mortality from extrinsic challenges was 

defined by a probability distribution where the probability of dying from the extrinsic 

process in age interval (     ) equals 

 

     ( ∫         ⁄   
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(        ⁄        ⁄ ))  

 

which mimics the random Poisson challenge process with an exponentially distributed 

magnitude. An intrinsic mortality event was defined when an individual’s vitality 

trajectory    dropped below zero. In both cases the vitality trajectory was excluded 

from further calculations. Thus survival curves were calculated from the fraction of 

vitality trajectories remaining at each age.  

Biases and corrections: We aimed to correct the bias of the model parameters 

(       ) resulting from the assumptions in the modified model. However, even with 

only four parameters it is difficult to track the bias of one parameter over the entire 

space of the other parameters. Fortunately we only needed to determine the parameter 

values for human mortality data which vary within relatively small ranges. Exploratory 

simulations (Table A1) revealed that   has little bias in the modified model, while   is 
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slightly underestimated, and   and   are overestimated by less than 40% of their true 

values. To investigate the bias of parameters estimated from human mortality data we 

conducted simulations based on parameters obtained from period mortality data of adult 

(age  20) Swedish females (1800-2007) according to equation (8). For each period 

year a set of parameters ( ̂  ̂  ̂  ̂) was estimated from the Swedish mortality curve 

using the two-process model-fitting algorithm in the vitality package in CRAN 

(http://CRAN.R-project.org/package=vitality). Thus there were 208 baseline parameter 

sets. Ten additional parameter sets were randomly picked for each of the four 

parameters, allowing  ,       and   to vary separately within a range from 95% to 

100%, 60 to 100%, 70% to 100%, and 95% to 105% of their baseline values, which 

gave in total 2080 = 208×10 “true” parameter sets. We generated 2080 survival curves 

according to the process, estimated 2080 parameter sets, and compared them to the 

“true” sets, which were used to estimate the bias corrections for the parameters.  

The ratios of the estimated biased parameters over the “true” parameters used in 

equation (A1) are plotted against the estimated  ̂  (Figure A1). Although all parameters 

biased the estimates, the bias is most sensitive to changes in  . Intuitively, if the 

population variance in vitality (measured by  ) is large, the modification which assumes 

uniform extrinsic killing regardless of the real heterogeneity would result in a large 

bias. Both ratios of  ̂  ⁄  and  ̂  ⁄  slightly decrease with  ̂ and are approximately within 

a range of 0.9 to 1.0, indicating that   and   are relatively unbiased in the modified 

model. Both  ̂  ⁄  and  ̂  ⁄  increase with  ̂, and the variances of these two ratios are 

relatively large compared to the other two. The strong linear relationships between the 

estimated and true parameters can be used to correct the bias in the modified model. 

From the regressions the true parameters were approximated (equation 9). Note that we 

also derived the approximated standard errors from bootstrapping for all the ratios, 

which then can be applied to obtain the 95% CI for those corrected parameters (Figure 

4).  

  

http://cran.r-project.org/package=vitality
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Figure A1: Numerical simulations depicting the effect of model assumptions on 

biasing parameter estimates depicted as ratios of estimated 

parameters over the true values against estimated   ( ̂). 
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Table A1: Results from the analysis of parameter bias where parameters are 

chosen close to the values estimated from the morality data of 

Swedish females. 

Parameter         

True value 0.0160 0.0160 0.0400 0.5000 

Estimated value 0.0154 0.0163 0.0458 0.4649 

Std. error 0.0001 0.0004 0.0027 0.0187 

True value 0.0160 0.0140 0.0600 0.4000 

Estimated value 0.0154 0.0148 0.0672 0.3841 

Std. error 0.0001 0.0004 0.0037 0.0120 

True value 0.0160 0.0150 0.0600 0.2000 

Estimated value 0.0152 0.0167 0.0687 0.2038 

Std. error 0.0001 0.0003 0.0047 0.0064 

True value 0.0150 0.0150 0.0800 0.2000 

Estimated value 0.0140 0.0208 0.0896 0.2036 

Std. error 0.0002 0.0006 0.0102 0.0064 

True value 0.0150 0.0120 0.0800 0.1800 

Estimated value 0.0142 0.0152 0.1001 0.1801 

Std. error 0.0001 0.0004 0.0098 0.0049 

True value 0.0150 0.0120 0.1000 0.2000 

Estimated value 0.0141 0.0157 0.1250 0.1977 

Std. error 0.0001 0.0005 0.0128 0.0058 

True value 0.0140 0.0100 0.1000 0.2000 

Estimated value 0.0133 0.0126 0.1194 0.1987 

Std. error 0.0001 0.0004 0.0096 0.0049 

True value 0.0140 0.0100 0.1000 0.1500 

Estimated value 0.0132 0.0134 0.1266 0.1526 

Std. error 0.0001 0.0004 0.0134 0.0039 
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Challenge distribution effect on challenge frequency: To evaluate if the increase in 

challenge frequency after 1950 (Figure 4D) could be the result of the distribution 

function of challenge magnitude  ( ̅( )) deviating from the assumed exponential 

pattern, we conducted simulations. We specified two types of challenges. Type 1 

challenges had higher average magnitude    and lower frequency   , as might be 

expected with extreme, but rare, disease outbreaks and natural disasters. Type 2 

challenges had lower average magnitude    but higher frequency   , as might be 

expected with physical injuries and common diseases. The challenge magnitudes for 

both types followed exponential distributions. Survival curves were generated 

following the method described in the survival curve generation algorithm of equation 

(A1). Both types of challenges were applied to the population. Parameters   = 0.014,   

= 0.01,    = 0.15,    = 0.5 and    = 0.12 were fixed and    was varied from 0 to 0.05. 

The simulation results, summarized in Figure A2, depict the ratios of the estimated 

parameters to the true or expected values in the simulations plotted against   . The 

expected challenge frequency is the sum of the two frequencies, 

 

          (A2) 

 

and the expected challenge magnitude is the weighted magnitude from the two sources 

 

    
  

  
    

  

  
   (A3) 

 

As suggested by Figure A2, the decrease in frequency for the high magnitude 

challenges does not significantly influence   and  . However, the ratio of   declines 

slightly and the ratio of   fluctuates as the frequency of the higher magnitude challenge 

is reduced. Thus the intrinsic parameters are relatively insensitive to variations in the 

nature of challenges. In contrast, the challenge parameters are sensitive to the mixture 

of challenges. With a relatively large proportion of Type 1 challenges, the estimated   

is biased to   , but when the frequency of Type 1 challenges is reduced to a threshold, 

i.e.,        ,         in the simulation, the estimated   quickly approaches its 

expected value   . The estimated    is also affected. When Type 1 challenges 

dominate, the average challenge magnitude is overestimated. Also, when Type 2 

challenges dominate, the estimated magnitude approaches that predicted by equation 

(A3). Thus, the model assumption that all challenges can be represented by a single 

distribution function results in biases when the challenges are comprised of different 

distributions of frequencies and magnitudes. Therefore, the challenge parameters we 

obtained from the model may best reflect the characteristics of high magnitude 

challenges.  

  



Li & Anderson: Shaping human mortality patterns through intrinsic and extrinsic vitality processes 

372  http://www.demographic-research.org 

Figure: A3: Simulations illustrating the ratio of estimated parameters over their 

true values as a function of the frequency of the high intensity 

challenge. Challenge Type 1 is a high magnitude challenge with 

frequency   . Other parameters,   = 0.014,   = 0.01,    = 0.15,    = 

0.5 and    = 0.12, were fixed. 
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