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The difference between alternative averages

James W. Vaupel 1, 3

Zhen Zhang 2, 3

Abstract

BACKGROUND
Demographers have long been interested in how compositional change, e.g., change in
age structure, affects population averages.

OBJECTIVE
We want to deepen understanding of how compositional change affects population
averages.

RESULTS
The difference between two averages of a variable, calculated using alternative weighting
functions, equals the covariance between the variable and the ratio of the weighting func-
tions, divided by the average of the ratio. We compare weighted and unweighted averages
and also provide examples of use of the relationship in analyses of fertility and mortality.

COMMENTS
Other uses of covariances in formal demography are worth exploring.
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3 The authors would like to thank the two anonymous reviewers for pointing out missing references and making
constructive comments which improved the quality of the paper.
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1. Relationship

Let v denote the mean average of v(x) over x,

(1a) v =

∫
v(x)w(x)dx∫
w(x)dx

if x is continuous and

(1b) v =

∑
x v(x)w(x)∑

x w(x)

if x is discrete, where v(x) is some demographic function, e.g., a birth rate or death rate,
and w(x) is some weighting function, e.g., population size or number of children. The
variable x could denote, e.g., age, time, individual, family or country.

Let w(x) and w∗(x) be two alternative weighting functions with

(2) ϕ(x) =
w∗(x)

w(x)
.

Let v and v∗ be the mean values of v(x) weighted by w(x) and w∗(x), respectively.
Then

(3) v∗ − v =
v ∩ φ

φ
,

where v ∩ φ, spoken "v covφ", is a simpler notation than the usual Cov(v, φ) to denote
the covariance between v and φ (Vaupel 1992). Because the covariance of two functions
is the average value of the product of the functions minus the product of their average
values, this covariance is defined by

(4a) v ∩ φ = vφ− v φ.

In more detail and in the continuous case, the formula is

(4b) v ∩ φ =

∫
v(x)φ(x)w(x)dx∫

w(x)dx
−

∫
v(x)w(x)dx∫
w(x)dx

∫
φ(x)w(x)dx∫

w(x)dx
.

Note that in calculating the covariance the weight that is used is w(x).
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2. Proof

It follows from (1) and (2) that

v∗ =

∫
v(x)w∗(x)dx∫
w∗(x)dx

=

∫
v(x)w(x)φ(x)dx∫
w(x)φ(x)dx

=

∫
v(x)w(x)φ(x)dx∫

w(x)dx

∫
w(x)dx∫

w(x)φ(x)dx

=
vφ

φ
.

(5)

This implies

(6) v∗ − v =
vφ

φ
− v =

vφ− v φ

φ
=

v ∩ φ

φ
.

Q.E.D.

3. History and related results

The age structure of a population is often the weighting function used to compute demo-
graphic averages. Analysis of how change in age structure affects averages was first ad-
dressed by the method of indirect standardization, which, as discussed by Keiding (1987),
can be traced back to Dale (1777). Equation (3) can be used to study how much differ-
ence it makes if indirect standardization is done using one set of weights vs. another
set of weights. Preston, Himes and Eggers (1989), following a suggestion from Ansley
Coale, use the covariance in their study of change in a population’s average age; they find
that the change in average age is equal to the covariance between age and age-specific
growth rates. This result was generalized by Vaupel (1992), Schoen and Kim (1992) and
Vaupel and Canudas-Romo (2002). Our main result, equation (3), can be viewed either
as an elaboration of the Preston et al. formula or an application of the Vaupel formula.
Although the covariance is widely used in statistics and in biology, we do not know of
any other uses of the covariance in formal demography.

The covariance is closely related to Pearson’s correlation coefficient ρ :

(7) v ∩ u = σ(v)σ(u)ρ(v, u),
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where σ(v) and σ(u) are the standard deviations of the functions v and u. The covariance
has the following noteworthy properties:

(8) v ∩ v = σ2(v),

where σ2 denotes the variance,

(9) v ∩ u = u ∩ v,

(10) kv ∩ u = k(v ∩ u)

and

(v1 + v2) ∩ u = v1 ∩ u+ v2 ∩ u.(11)

4. Applications

4.1 Average family sizes weighted by mothers and by children

Preston (1976) considers the relationship between the number of children mothers have
and the number of siblings children have. The average number of children in a family is
given by

(12) i =
∑

iN(i)/
∑

N(i),

where N(i) is the number of mothers with children. For a child’s perspective, the average
number of children per family is

(13) i
∗
=

∑
iiN(i)/

∑
iN(i),

where the denominator is the total number of children. Hence φ = i and φ = i. Applying
equation (3) leads to Preston’s elegant result that

(14) i
∗ − i =

σi
2

i
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where σi
2 = i∩φ = i∩ i is the variance of the number of children per mother. This is an

example of length-biased sampling: Equation (3.3) in Cox (1969) is identical to equation
(14).

4.2 Effect of changes in fertility

Preston, Heuveline and Guillot (2001; pp.157-8) derive an equation to account for the
effect of a fertility-induced increase in r on the death rate µ =

∫ ω

0
c(a)µ(a)da in a stable

population:

(15)
d lnµ

dr
= AP −AD,

where AP is the mean age of the stable population:

AP =

∫ ω

0
c(a)ada∫ ω

0
c(a)da

and AD is the mean age at death in the stable population:

AP =

∫ ω

0
c(a)µ(a)ada∫ ω

0
c(a)µ(a)da

The function c(a) = be−rap(a) gives the age distribution of the population with p(a)
denoting the probability of surviving to age a and µ(a) denoting the force of mortality at
age a .

Note that

φ(a) =
c(a)µ(a)

c(a)
= µ(a).

Applying equation (3) to the right side of equation (15) gives

AD −AP =
a ∩ φ

φ̄
=

a ∩ µ

µ̄
,(16)

which implies
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(17)
d ln µ̄

dr
= −a ∩ µ

µ̄
.

Note that the left side of the above equation is the relative change in µ̄. Hence the
absolute change in µ̄ will be

(18)
dµ̄

dr
= a ∩ µ.

If the correlation between age and the force of mortality is positive, as it generally is
in modern human populations, then the death rate will fall when fertility rises. In human
populations with high infant and childhood mortality but with such high fertility that the
population is growing, the covariance can be negative. Furthermore, for many trees, fish
and other non-human populations mortality tends to fall with age (Vaupel et al., 2004):
for such species the death rate will rise when fertility rises.

In a stationary or lifetable population, the inverse of the death rate equals life ex-
pectancy eo and the average age at death also equals life expectancy. Consequently, (16)
implies

(19)
AP

eo
= 1− a ∩ µ.

An extreme case is when no one dies until an age X when everyone dies. In this case,
life expectancy is X and the average age of the living is X/2, so the covariance is 0.5. If
mortality is constant over age, then the covariance is zero: the average age of the living
and the average age at death are equal. If age is negatively correlated with the force of
mortality, then the living are, on average, older than life expectancy.

4.3 Change in number of births due to population growth

Schoen and Kim (1992) derive a formula which is equivalent to the discrete form of
equation (3). Schoen and Kim consider the number of births at time t, given by

Bt =
∞∑
a−0

Na,tma,t,

424 http://www.demographic-research.org
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where Na,t is the population size at age a and time t and ma,t is age-specific fertility.
They define population growth over a period of unit time by

(20) exp(ra,t) =
Na,t

Na,t−1
.

If age-specific fertility is constant over time, ma,t = ma,t−1 for all t, the change in
the number of births from time t− 1 to t is

Bt −Bt−1 =
Nt−1

Nt
m ∩ exp(r)(21)

where Nt =
∑∞

a=0 Na,t is the total population at time t. This equation is equation (23)
in the Schoen and Kim article. It can be seen that the equation is equivalent to equation
(3), by noting an interesting property of the growth rate defined in equation (20):

exp(r) =

∑∞
a=0 exp(ra,t)Na,t−1∑∞

a=0 Na,t−1
=

∑∞
a=0

(
Na,t

Na,t−1

)
Na,t−1∑∞

a=0 Na,t−1
=

Nt

Nt−1
.

Substituting this result in equation (21) leads to

(22) Bt −Bt−1 =
m ∩ exp(r)

exp(r)
=

m ∩ φ

φ̄
.

with φ = exp(ra,t) = Na,t/Na,t−1.

4.4 Weighted vs. unweighted averages

Consider some demographic function v(i) that is defined over populations designated by
i, e.g., life expectancy for various countries or average income for different household
sizes. Then the unweighted average is

ν̄ =

∑n
i=1 v(i)

n
,(23)

whereas the average weighted by population size N(i) is
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ν̄∗ =

∑n
i=1 N(i)ν(i)∑n

i=1 N(i)
.(24)

Hence (3) implies

ν̄∗ − ν̄ =
ν ∩N

N
,(25)

where N =
∑

N/n is the average population size. The weighted average will exceed
the unweighted average if the variable of interest is positively correlated with population
size.

As an example, consider average household income. The unweighted average was
about $57 thousand in total income per household in the US in 2010. The corresponding
average weighted by the number of persons in a household was $61 thousand (US Census
Bureau 2011). The $57 thousand figure gives the average income per household whereas
the $61 thousand figure gives the average household income per person. The covariance
is positive because bigger households tend to have more total income. In particular, the
total income of households with two members was $56 thousand vs. $31 thousand for
households with one member.
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