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Research Article

Variance in death and its implications
for modeling and forecasting mortality

Shripad Tuljapurkar 1

Ryan D. Edwards 2

Abstract

The slope and curvature of the survivorship function reflect the considerable amount of
variance in length of life found in any human population. This is due in part to the well-
known variation in life expectancy between groups: large differences in race, sex, socioe-
conomic status, or other covariates. But within-group variance is large even in narrowly
defined groups, and changes substantially and inversely with the group average length of
life. We show that variance in length of life is inversely related to the Gompertz slope
of log mortality through age, and we reveal its relationship to variance in a multiplicative
frailty index. Our findings bear a variety of implications for modeling and forecasting
mortality. In particular, we examine how the assumption of proportional hazards fails
to account adequately for differences in subgroup variance, and we discuss how several
common forecasting models treat the variance in the temporal dimension.
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1. Introduction

Length of life is a fundamental dimension of human prosperity. We measure this di-
mension either with period life expectancy at birth, e0, the average length of life, or we
measure its inverse either with age-specific mortality rates that underpin the life table, or
with the log odds of death. Correctly modeling mortality is crucial for inference in both
observational and experimental settings, and thus for forecasting. In this paper, we illus-
trate how patterns in the variance of length of life, whether measured across subgroups at
a point in time or in human populations over long periods of time, bear strong implica-
tions for how we model mortality and test hypotheses in cross-sectional and longitudinal
settings.

In the cross section and over short panels, the Cox (1972) proportional hazards model
and the logit or logistic regression model are standard tools in epidemiological studies
and in medical research. As they are typically specified, these models assume that sub-
groups experience proportionally higher or lower hazards relative to a baseline. We show
that cross-sectional patterns in the variance in length of life across subgroups, where vari-
ance is inversely related to average life expectancy, are not at all adequately captured by
proportional hazards. This is because variance in length of life is closely tied to the age
slope of mortality; subgroup differences in the variance in length of life are equivalent
to subgroup differences in the age slope of mortality. Regardless of the precise nature of
baseline mortality, which may be modeled nonparametrically, proportional hazards im-
pose the same age slope and thus the same variance in length of life on all subgroups.

Violations of the proportional hazards assumption have been extensively remarked
and explored (Hess, 1995; Lee and Go, 1997; Therneau and Grambsch, 2000), and re-
searchers have suggested various methods to address them. One option is to augment stan-
dard models by injecting individual frailty (Vaupel, Manton, and Stallard, 1979; Hougaard,
1995). As we discuss, frailty models are helpful because they add an additional param-
eter that makes a direct impact upon variance. But the concept of frailty does not help
us intuitively understand cross-sectional or intertemporal patterns in variance; it simply
improves the fit of models without increasing our understanding. One class of models de-
signed to account for frailty, accelerated failure time (AFT) models, posits a proportional
scaling of the distribution of survival time across subgroups, which inappropriately im-
plies a positive rather than negative relationship between mean and variance. Approaches
that relax the assumption of proportional scaling, such as the use of stratified Cox re-
gression, time-dependent covariates, or the nonparametric method of Kaplan and Meier
(1958) are preferable.

From an aggregate perspective, the expansion of human life in the past century (Pre-
ston, 1975; Caldwell, 1976) and its socioeconomic implications have stimulated efforts
to analyze and forecast mortality trends (Tuljapurkar and Boe, 1998), which are guided
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by insights gained from mortality models. A natural focus of these efforts is the period
expectation of life at birth, e0. Mortality change is commonly summarized in terms of
trends in e0, and mortality models are evaluated on their ability to match historical trends
in life expectancy. These uses of e0 gained considerable support from two recent findings:
that e0 has increased at a nearly constant rate in many industrial countries since 1955
(White, 2002), and that since 1840 annual world record female e0 has also increased at a
nearly constant rate (Oeppen and Vaupel, 2002). Some have argued that such constancy
is fundamental in analyzing mortality change (Bongaarts and Feeney, 2002, 2003), and
one researcher (Bongaarts, 2005) has extended a simple model (Vaupel, 1986) to forecast
mortality change. But e0 is only the mean of the distribution of ages at death, and we show
here that the variance of this distribution provides important additional information. As
we reveal, temporal change in the variance in age at adult death is not necessarily captured
by simple models, which may inappropriately constrain how we should conceptualize and
analyze mortality change.

This paper is organized in four main parts. First, we discuss cross-sectional and tem-
poral patterns in distributions of period life-table ages at death. We recount how historical
increases in e0 in the industrialized countries have been accompanied by equally strik-
ing decreases in the variance of the age of adult death (Edwards and Tuljapurkar, 2005).
These trends show clearly that mortality decline over time has compressed the variance
between individuals at the same time as it has increased average life expectancy. Cross-
sectional patterns reveal the same inverse relationship between subgroup variance and
average. While overall variance has declined over time, very large differences in vari-
ance between subgroups remain. Less advantaged groups experience both lower average
length of life and higher variance.

Second, we show how the variance in age of adult death can be approximately com-
puted for any reasonable model of mortality rates, and illustrate this with three commonly
used models, the Gompertz (1825), the logistic, and a Gompertz model with multiplica-
tive frailty. In particular, we reveal the inverse relationship between the Gompertz slope
and the variance in length of adult life. A particular age slope of mortality will reflect a
particular variance, but while it can be consistent with different subgroup average lengths
of life, it cannot accurately capture the large differences in subgroup variances. Adding
frailty into the model can explain variance, but not in a satisfactory way in terms of any
intuition.

Third, we explore the implications of these insights for common mortality models. As
concerns forecasting, we show that any generalization of the Bongaarts-Vaupel translation
argument yields an unchanging variance in the age at adult death over time, which may or
may not be a preferable characteristic. Over long periods of time, trends in variance have
comprised a major qualitative aspect of mortality change in industrialized countries, and
we suspect the same is true for developing countries. We recount world-record trends in
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the variance in age of adult death, and discuss their implications for understanding secular
mortality change. In the setting of panel data on individuals, we illustrate how Gompertz
slopes that vary systematically across subgroups violate the assumption of proportionality,
and we discuss how various methods to address this either succeed or fail in modeling
variance correctly.

Finally, we discuss how our results fit into ongoing research on aging more generally.
Insights into the plasticity of the Gompertz slope and what may be driving it are particu-
larly relevant for gauging the future of the human aging process. Results in the literature
on genetic interventions in nonhuman species become particularly intriguing when com-
bined with the insights we present here. Our results are related to work on the “rectan-
gularization” of the survivorship schedule (Wilmoth and Horiuchi, 1999; Kannisto, 2000)
and on its shape more generally (Cheung et al., 2005). They are also connected to research
on the existence of a maximum age at death (Fries, 1990; Olshansky, Carnes, and Cassel,
1990; Wachter and Finch, 1997). All these topics subsume questions as to the possible
limiting forms of the distribution of age at death. Our analysis makes no assumptions or
deductions about such a limit, but aims to illuminate the nature and significance of trends
in the variability of age at death.

Other recent work in social science examines contributions of subgroup variance to
overall inequality in other measures of well-being such as income (Western and Bloom,
2009). We believe such research shows much promise, and that applying similar tech-
niques to the study of mortality would prove fruitful in future pursuits. Our focus here
is primarily on aggregate inequality in length of life, which we show is linked to the
Gompertz slope and the commonly used proportional hazards model.

2. Distributions of age at death over time, space, and characteristic

The age pattern of life table deaths in any period, which is also the distribution of period
length of life, is found from mortality rates µ(a) by age a in that period. We define
cumulative mortality as

M(a) =
∫ a

0

µ(s) ds, (1)

and survivorship is given by

`(a) = exp
[
−

∫ a

0

µ(s) ds

]
= `(a) = exp[−M(a)]. (2)

The probability density of death at age a is

φ(a) = µ(a) `(a). (3)
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Even when it is small as in industrialized countries during the past half century, infant
mortality produces some nonzero φ(0) at the extreme left end of the distribution. But
φ(a) falls to very low levels thereafter and remains low until well into adult ages.

Figure 1 plots φ(a) for racial subgroups within the U.S. in 2004 based on life tables
prepared by Arias (2007). In that year, e0 among African Americans was 73.1 years, 5.2
fewer years than for whites. Part of this was due to a greater density of deaths in infancy,
which approached 0.015% for blacks, more than twice the level for whites, but there were
also differences in the much larger probability of death at older ages. Life expectancy
conditional on reaching age 10, e10, was 68.9 for whites but only 64.3 for blacks. The
width of the distribution around older ages, which we measure by the standard deviation
above age 10 or S10, introduced by Edwards and Tuljapurkar (2005) and discussed shortly,
is also visibly different across racial groups. For whites in 2004, S10 = 14.9, while among
blacks it was almost 2 years higher. Patterns of inequality in length of life through other
dimensions of socioeconomic status (SES) such as income or education look essentially
the same (Edwards and Tuljapurkar, 2005), as do differences by sex.

Figure 1: Distributions of age at death by race in the U.S. in 2004
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Source: Arias (2007). Data are life-table deaths by race ndx for both sexes combined.
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A similar picture emerges when we examine distributions of length of life over time
instead of across characteristic. Figure 2 plots deaths for both sexes combined in Swe-
den in 1900 and 2000, revealing that long-term temporal variation looks a lot like cross-
sectional variation. Higher status or more time is rewarded with less variance and higher
mean. Dissimilarities include the much higher level of infant mortality in 1900 and the
large “baseline” probability of death at practically any age. Both of these features re-
flected the prevalence of infectious disease before the completion of the epidemiological
transition.

Figure 2: Distributions of age at death in Sweden in 1900 and 2000
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Comparing Figures 1 and 2 reveals another interesting pattern of differences in the
distribution of length of life across geographic boundaries. The standard deviation in
adult length of life among U.S. whites, is about 2 years higher than it is in Sweden. This
is the point made by Wilmoth and Horiuchi (1999) and Edwards and Tuljapurkar (2005),
and recently extended to developing countries by Edwards (2010). Cross-national trends
conform to the pattern of higher status bringing higher mean and lower variance.

We measure variance in adult ages at death by choosing a cutoff age A at which prob-
abilities of death are near their minimum and are relatively stable over time. Following
Edwards and Tuljapurkar (2005), we focus on S10, the standard deviation of length of life
starting from age A = 10, but results are similar across various cutoffs. Infant and child
deaths contribute strongly to total variation in length of life, but as we now explain, they
do so in a relatively uninformative way that masks important trends. Consider the average
age at death starting from birth in the period life table, also known as e0. Write T for
the random age of death of an individual in a hypothetical cohort following a period life
table, where `(A), the familiar survivorship probability at age A, is also the probability
of adult death (T > A). Then period life expectancy at birth can be decomposed as

e0 = [1− `(A)] M− + `(A)M+, (4)

where M− and M+ are (conditional) average ages of death for those who die young or
die as adults, respectively. In the industrialized countries in the last five or six decades,
M− is much below 1 year for all subgroups, and 1− `(A) is well under 10%, so the main
determinant of e0 is the timing of adult death. We can also decompose total variance
starting from birth as

Var(T ) = [1− `(A)] V− + `(A) V+ + [1− `(A)] (M− − e0)2 + `(A) (M+ − e0)2, (5)

where V− and V+ are (conditional) variances of age at death for those who die young or
die as adults. For all subgroups in the industrialized countries, only the second and third
of these four terms matter. The first term is small because both its components are small,
and the last term is small because e0 has become almost arbitrarily close to M+. While
the third term contributes substantially to Var(T ), it does so only because M− is very
small relative to e0. This difference is not at all informative about substantive variation in
the adult ages at which most deaths occur.

Figure 3 shows the four components in equation (5) using Swedish data over the
period 1900 to 2003 and A = 10. Since about 1940, the element that matters most to
understanding total variability in age at death is the second term in equation (5), `(A) V+,
which is shown at upper right. Today, variance in length of life above age 10 accounts for
over 85% of total variability in Sweden, while variance below age 10 such as attributable
to infant mortality is responsible for less than 15%. While we have not performed a
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formal analysis, we believe a similar bottom line ought to emerge were we to examine
distributions of length of life among subgroups defined by SES or race, which is difficult
owing to data constraints. We know it to be true for either sex, and we also find that
sex differences in variance today are driven primarily by sex differences in adult variance
rather than in infant mortality, a result that mirrors work by Glei and Horiuchi (2007) on
the sex differential in life expectancy. Given that trends in variance are important and
interesting, a vital question is whether we are capturing them correctly when we model
mortality.

Figure 3: Decomposing total variance in length of life in Sweden since 1900
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ndx. See equation (5) in the text for the formulation of each component; V− is the variance of age at death
below age 10 weighted by deaths below age 10, V+ is the variance above age 10 weighted by deaths above 10,
M− is the squared difference between e0 and the mean age at death below age 10 weighted by deaths below
10, and M+ is the squared difference between e0 and the mean age at death above 10 weighted by deaths above
10.
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3. Theoretical models of adult mortality

The most celebrated model of adult age-specific mortality is that of Gompertz (1825), in
which the force of mortality rises exponentially with age. But recent work by Vaupel et al.
(1998), Thatcher, Kannisto, and Vaupel (1998) and others suggests that a logistic model
with an asymptote describes old-age mortality more accurately. The logistic can also be
seen as a result of a model in which Gompertz mortality is modified by a multiplicative
frailty (Vaupel, Manton, and Stallard, 1979). Frailty, if it occurs in this form, should
clearly contribute to the variability in age at death. While it can, we do not find this
an entirely compelling account of historical or cross-sectional patterns in S10. Overall,
traditional models are not well-equipped to deal with or provide understanding about
variance.

We next present analytical results showing how the variance in age at adult death
depends on the parameters of mortality models. We consider first a general mortality
model without frailty, and the special cases of Gompertz and logistic, then a general
model with multiplicative frailty, with special cases of gamma frailty, and Gompertz with
gamma frailty.

3.1 General mortality model

Suppose that adult mortality µ(a) is an increasing positive function of age a. Survivor-
ship falls to zero as age increases because cumulative mortality M(a) is increasing. The
probability distribution of age at death for adults, φ(a), increases at young adult ages,
reaches a mode a0 and then falls, ultimately reaching zero by very high ages.

To proceed, we take a Taylor expansion of the age-at-death distribution φ(a) around
the mode a0, and then we approximate the resulting quadratic with a normal distribu-
tion. The mathematical appendix presents detailed steps. The end result is the following
relationship:

φ(a) ≈ φ(a0) exp
(
− (a− a0)2

2 σ2

)
, (6)

where

σ2 =
φ(a0)
|φ′′(a0)| =

µ(a0)
|µ′′(a0)− 2 µ3(a0)| . (7)

The variance term σ2 depends on the curvature of the mortality function and roughly
equals the variance in age at adult death. This approximation provides a useful and often
accurate estimate of the moments of φ(a) — we use it here and also check its accuracy
by numerical computation.
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3.2 The Gompertz model

We write the Gompertz mortality function as

µ(a) = µ0 eβ a, (8)

where the parameter β is the familiar age-slope of log mortality, a constant in the Gom-
pertz model. In the U.S. for both sexes combined, the age-slope is about 0.087 (Edwards,
2009); that is, mortality rates increase 8.7% with each year of age. From equation (7) (see
appendix) the variance in adult age at death is approximately given by

σ2 ≈ 1
β2

. (9)

Thus the Gompertz variance in age at death depends only on the slope parameter β and not
on µ0. It is possible to obtain an exact expression for the variance by analytical integration
in terms of special functions, but the results are not especially illuminating. However, we
have computed numerically the exact variance for a range of values of β and µ0 that
are appropriate for twentieth century human mortality. We find that the exact value of σ
depends only weakly on µ0 and that equation (9) is a very accurate approximation.

It follows that a Gompertz model can only describe differences in the variance of the
adult age at death with differences in the Gompertz parameter β, the age-slope of log
mortality. There is a one-to-one inverse relationship between the age-slope of mortality
and the variance in length of life. Were equation (9) an exact relationship, β = 0.087
would be consistent with σ = 11.5.

3.3 The logistic model

When measured by S10, U.S. levels of σ are higher than implied by β = 0.087, more in
the range of 15.0 rather than 11.5. We know there are departures from linearity in log
mortality rates at advanced ages; how does this affect σ as a function of β? We write the
logistic model for mortality as

µ(a) =
eβ a

C + eβ a
, (10)

where C is the asymptote, commonly set to equal unity. From equation (7) (see appendix)
the approximate variance is

σ2 =
1 + β

β2
. (11)

Thus the logistic also displays the remarkable property that the variance in age at death
depends only on the slope parameter β. It follows that a logistic model can only describe
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changes in the variance of the adult age at death if the slope parameter β changes with
time.

Note that if we fit a Gompertz model and a logistic model to a particular data set, the
value of β must be similar in both. To see why, compare the two models near a = 0 which
here indicates the start of adult age. With the same β, the logistic model implies only a
slightly larger variance in age at adult death than the Gompertz. We expect this difference
because the density φ for the logistic model shallows as age increases; see the discussion
after equation (6). For β = 0.087, equation (11) implies σ = 12.0, closer to reality than
the Gompertz but not by much. Of course, when we measure σ with S10, we are including
variance due to traffic accidents, violence, and other causes that asymmetrically make an
impact upon the young in a decidedly non-Gompertz way. For the U.S., this problem may
be particularly acute. Edwards and Tuljapurkar (2005) find that removing external-cause
mortality reduces S10 by 1–1.5 years, leaving still perhaps 1.5 years in extra S10 that
cannot be well explained by logistic or decelerating log mortality, or by external causes.

A natural next step is to examine the connection between frailty in mortality and
variance in length of life, two concepts that are related. A convenient way to proceed is
by generalizing the Gompertz model. Next we discuss a model that incorporates frailty,
including two special cases.

3.4 General mortality, multiplicative frailty

Following Vaupel, Manton, and Stallard (1979), suppose that every individual has a ran-
dom frailty Z and that g(z) dz is the probability that Z takes values between z and z+dz.
Then mortality µ̄ is given by the product of the frailty parameter Z and a baseline mortal-
ity function µ(a):

µ̄(a|Z) = Z µ(a). (12)

The usual specification of a frailty distribution assumes that average frailty is 1, and
that the distribution of frailty has some variance. It is convenient to define the following
averages with respect to frailty:

hj(a) = E [Zj e−Z M(a)], for j = 1, 2, 3. (13)

Then the approximate variance in age at death is just a generalization of equation (7):

σ2 =
φ(a0)
|φ′′(a0)| =

h1(a0)µ(a0)
|φ′′(a0)| . (14)

As shown in the appendix, φ′′ depends on h1, h2, and h3. But when every frailty is set
equal to 1, these are all equal, and the variance is reduced to the value in equation (7).
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3.5 General mortality, gamma multiplicative frailty

To obtain a useful qualitative sense of the effect of frailty, we consider the special case
when frailty Z follows a gamma distribution (Vaupel, Manton, and Stallard, 1979). Let
the probability that Z lies between w and w + dw be given by g(w) dw, where

g(w) =
kk

Γ(k)
wk−1 e−k. (15)

The average frailty is 1 and the variance of frailty is Var(Z) ≡ s2 = 1/k.
As we show in the appendix, the magnitude of frailty selection depends on both the

variance in frailty s2 and the cumulative mortality hazard. Strong selection works to de-
crease the modal age at death. To examine the variance, we can find the second derivative
φ′′ at the modal age and use it in a Taylor approximation:

σ2 =
µ(a0)

|µ′′(a0)− µ3(a0) [(1 + s2)(2 + s2)] / [(1 + s2M(a0)2)] | . (16)

The selection effect appears in the denominator, where s2 multiplies by the cumulative
mortality M(a0) at ages below the mode. Strong selection via a large M(a0) will com-
bine with variance in frailty s2 to reduce the denominator and thus inflate the variance σ2

in age at death.

3.6 Gompertz mortality, gamma multiplicative frailty

We can learn more by combining the above multiplicative gamma-distributed frailty with
the Gompertz baseline mortality from equation (8). In the appendix, we derive the modal
age at death for such a model. We obtain the variance in age at death using equation (16),
equation (33) from the appendix, and a little algebra, which yields the parsimonious result
that

σ2 =
(1 + s2)

β2
. (17)

Comparing this with equation (9) for the standard Gompertz, both shown along the bottom
row in Table 1, shows that frailty amplifies the variance in age at death. A Gompertz
model with gamma frailty can describe changes in the variance of the adult age at death
with changes either in the Gompertz slope parameter β, or in the variance in frailty s2, or
in both.
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Table 1: Characteristics of the distribution of adult death in three models

Parameter Gompertz Logistic Gompertz Gamma

Mortality at age
µ0e

βa eβa

C+eβa Zµ0e
βa

a, µ(a)

Density of deaths
µ(a)e−(µ(a)−µ0)/β (C + 1)1/β eβa

(C+eβa)1+1/β µ(a)
(

k
k+M(a)

)k+1

at a, φ(a)

Mode age at 1
β

log(β/µ0)
1
β

log(βC) 1
β

log(β/µ0 − s2)
death, a0

Variance in age 1
β2

1+β
β2

1+s2

β2at death, σ2

Notes: In the logistic model, C is the asymptote, commonly set to equal one. The cumulative force of mortality
at age a is M(a) =

∫ a
0 ds µ(s). In the Gompertz Gamma model, the multiplicative frailty index Z is

distributed gamma with density equal to g(w) = kk

Γ(k)
wk−1 e−k , an average E(Z) = 1, and a variance

Var(Z) ≡ s2 = 1/k.

3.7 Summary

Our key finding is that the Gompertz slope of log mortality through age, often called the
rate of aging, is inversely related to the variance in length of life. Differences across time,
space, or SES in the latter can only be captured by differences in age-slopes of mortality.
This insight is not greatly altered if mortality follows a logistic curve, flattening out at
advanced ages. Injecting frailty into standard mortality models loosens the relationship
between variance in life span and the Gompertz slope. A Gompertz model with Gamma
multiplicative frailty allows us to model heterogeneity in variance as deriving from het-
erogeneity in either the Gompertz slope, in the variance in frailty, or in both.

Normative or etiological insights from our exploration of these models are more elu-
sive. The basic result concerning variance in the Gompertz slope is important because
some have viewed the Gompertz slope as a kind of species-specific parameter that is eter-
nally fixed while the intercept may fluctuate (Finch, Pike, and Witten, 1990). But we
show it can only be constant if we add a free parameter such as frailty and allow it to fluc-
tuate arbitrarily in order to fit the data. A more straightforward reading of the evidence
is that instead, both nature and nurture must affect the Gompertz slope, at least in human
populations and potentially in other species.
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The addition of multiplicative frailty to a Gompertz model only addresses changing
variances in age at death if we assume that frailty distributions have been changing quite
rapidly over time. Temporal change in frailty has not been a standard feature of mortality
models, and it is not clear why the distribution of such frailties would have narrowed.
From an evolutionary perspective, it is not clear why frailty should have persisted into
modern humans at all. It is also unclear why in the cross section African Americans
should have persistently higher frailty than whites, or why Americans in general should
endure higher levels than Europeans or Japanese. Frailty models may allow us to model
mortality better in a strictly mechanical sense, but they do not appreciably improve our
understanding.

4. Models of adult mortality in practice

These results concerning variance in length of life and the age-slope of mortality bear
implications for modeling and forecasting. In this section we examine how variance is
implicitly or explicitly treated in an array of common frameworks. We first examine fore-
casting models, including a recent technique that involves mortality “translation,” which
we explain below, as well as the the popular Lee and Carter (1992) forecasting model,
which can be seen as a generalized Gompertz model. Then we discuss several standard
mortality models that are commonly used in short panels with microdata, where cross-
sectional patterns in variance are more important. We examine the Cox (1972) model, the
class of nonparametric models suggested by the methods of Kaplan and Meier (1958), and
accelerated failure time (AFT) models, which some have associated with frailty models.

4.1 Aggregate forecasting models

4.1.1 Mortality translation: Bongaarts-Feeney

The pioneering model of mortality translation due to Bongaarts and Feeney (2003) pro-
vides an appealingly simple description of mortality change, although it is controversial.
A recent edited volume by Barbi, Bongaarts, and Vaupel (2008) provides a thorough
overview of the method, which is related to the concept of tempo effects in mortality
(Bongaarts and Feeney, 2002).

One can describe the Bongaarts-Feeney model in terms of a hypothetical cohort fol-
lowing a period life table. Let T1 be the random age at death of an individual in this cohort
in period t1. In a later period t2 > t1, suppose that the effect of mortality change between
the two periods is completely described by delaying each death by the same amount. We
assume infant mortality is practically zero and thus can also be delayed in this fashion,
which although unrealistic is consistent with our focus on adult mortality. Each random
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age at death T1 in the first period is thus replaced in the later period by the random age
at death T1 + D, where D > 0 is fixed. We see at once that the average age at death
increases from e0(t1) = E [T1] in period t1 to e0(t2) = e0(t1) + D in the later period
t2. If we increase the mean age at death by some fixed annual amount, we have found a
model of mortality change that describes a constant trend in e0. We use the term mortality
translation for any such model.

Notice that translation only affects the mean age at death and not its variance. Shift-
ing every random age at death from T1 to T2 = T1 + D results in a constant variance,
Var(T1) = Var(T2), so long as D is fixed. In fact, translation leaves unchanged all the
central moments of the random age at death. Put geometrically, translation necessarily
implies that the shape of the distribution of age death does not change.

Mortality translation is appealing because it can be used with any mortality model.
Bongaarts and Feeney (2003) and Bongaarts (2005) used translation for a Gompertz and
a logistic model. Vaupel (1986) used a Gompertz model in essentially the same way,
although he did not explicitly refer to translation.

It is obvious that mortality translation, by construction, cannot describe temporal
changes in the variance in the probability distribution of age at death, or for that matter,
of other central moments of φ related to the shape of the distribution, such as skewness
or kurtosis. As revealed by Wilmoth and Horiuchi (1999), Cheung et al. (2005), and
Edwards and Tuljapurkar (2005), trends in all of these moments have been and remain
very interesting even in industrialized countries. Prior to 1960, S10 was strongly declin-
ing in industrialized countries, a pattern that is repeating itself among many developing
countries today (Edwards, 2010). To be sure, Bongaarts and Feeney (2003) never in-
tended their model to apply universally across historical periods; their aim was mortality
forecasting for the U.S. and other industrialized countries. But while S10 has remained
roughly steady on average in the U.S. since 1960, it has also fluctuated up and down
within a 1.5-year band over time (Edwards and Tuljapurkar, 2005), or ±5%. Forecasting
via translation makes a strong prediction about long-term trends in the variance.

4.1.2 Generalized Gompertz: Lee-Carter

Lee and Carter (Lee and Carter, 1992) proposed a parsimonious three-parameter model
that explains temporal trends in mortality well in industrialized countries (Lee and Miller,
2001). Using the singular value decomposition, they estimate

log µ(x, t) = a(x) + b(x) k(t), (18)

where µ(a, t) is the mortality at age a in period t, a, b are time-independent age profiles
[[or vectors]], and k(t) is a random walk with negative drift.
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The profile a(x) is an average of age-specific log mortality rates over the historical
sample period, so it ends up being approximately Gompertz or logistic in shape. But b(x)
is not necessarily constant with age, as it would have to be in a Gompertz model with
a fixed age slope over time. Indeed, fits of b(x) typically reveal stark age differences in
rates of mortality decline in industrialized countries (Tuljapurkar, Li, and Boe, 2000). By
consequence, the slope and curvature of mortality in this model are free to evolve over
time, which as our results show can easily lead to changes in the variance of age at death.
The singular value decomposition of equation (18) produces optimal fits of age-specific
mortality rates; the moments of the distribution of ages at death are backed out of the
model rather than hard-wired as in the Bongaarts-Feeney translation model.

Figure 4 depicts historical data since 1959 and probabilistic forecasts of S10 for U.S.
out to 2050 using the Lee-Carter model applied to log mortality rates for both sexes com-
bined from the Human Mortality Database (2009). The forecast is shown by three dashed
lines that indicate the 2.5, 50, and 97.5 percentiles of the distribution. Several charac-
teristics are informative. There is clearly a trend in S10, which declines in the median
forecast from 15 years around 2000 to just above 14 years by 2050. While this looks
like a bold prediction given the figure, by comparison practically all other high-income
countries except for France already enjoy levels of S10 around 14 or below.

4.1.3 Implications

Over the last two centuries, the variance in age at adult death as measured by the standard
deviation S10 has declined by almost 50%. Were we to use a Gompertz model to describe
period mortality at ages over 10, then the slope of the Gompertz model would have to
increase by about 40% in order to replicate observed trends in S10. A logistic model for
period mortality would require a larger increase, about 50%, in the slope. Over the past
50 years, the trend in S10 has been toward much more gradual decline, perhaps 1% in the
U.S., but temporary fluctuations in the variance around its slight downward trend have
been much larger, more like 10%.

Because mortality translation models do not allow for any change in the variance of
adult death, we urge some caution in applying their results to the age pattern of deaths,
even though they may describe recent changes in e0 perfectly well. A striking result
about long run mortality change is the demonstration by Oeppen and Vaupel (2002) that
world-record high e0 has risen at a remarkable linear rate over the past 160 years. Such
uniformity suggests that upper bounds on life span, prognosticated and then consistently
broken throughout this period, are not as clear as some currently believe. The pace of hu-
man development and achievement measured in this way has been rapid and surprisingly
steady across several distinct periods of socioeconomic and epidemiological transitions.
But Edwards and Tuljapurkar (2005) describe how long-term trends in the record-low
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variance paint a very different picture regarding the gains in human well-being along
the dimension of mortality. True, progress against the Gompertz slope has indeed been
achieved, contrary to the opinions of those who may have viewed it as immutable. But
long-term gains have come more in fits and starts rather than continuously, and this high-
lights the remaining challenges, as does the considerable heterogeneity across countries in
progress against variance during the last century. We do not fully understand the sources
of variance in life spans, nor the underlying health inequalities they presumably reflect,
and this is a problem for policy as well as for modeling and forecasting mortality. Trans-
lation models provide a good statistical fit to mortality patterns in industrialized countries
since 1950 (Bongaarts, 2005). But the shape of the age distribution of deaths provides
enough important insights that we should probably not assume it to be fixed over long
periods of time. By contrast, the Lee and Carter (1992) forecasting model can and does
predict changes in the variance in the age at death, but with caveats.

4.2 Short panel models

4.2.1 Cox proportional hazards

The semiparametric model of Cox (1972) is often said to be the gold standard for mod-
eling survival in clinical settings and other relatively short panels. The model’s lone
assumption is that hazards are proportional across groups identified by covariates. Mean-
while, the shape of the underlying mortality is not parameterized.

Although the Cox model does not require background mortality to be Gompertz, the
fact remains that it often is, at least approximately, because mortality rates tend to increase
exponentially until very advanced ages. Given this, our theoretical result that ties the
Gompertz slope to the variance in length of life also implies that the Cox proportional
hazards assumption is flatly inconsistent with cross-sectional patterns in variance. In
addition to having lower mean length of life, low-status groups also have higher variance,
which means they must have a smaller Gompertz slope or less steeply increasing mortality
with age. Thus it is clear that hazards are not proportional across individuals of varying
ages and statuses. By incorrectly assuming that they are, the standard Cox model will fail
to model any differences in subgroup variance.

It is by no means a revelation that hazards are often not proportional across groups,
of course. Researchers have developed a variety of tools to test for violations of propor-
tionality and a set of alternative models when violations are found (Hess, 1995; Lee and
Go, 1997; Therneau and Grambsch, 2000). One solution is to use time-varying coeffi-
cients; another is to perform stratified Cox regression. In either case, the analyst must
judge which characteristics on which to stratify or to allow to vary over time. Our results
suggest that allowing the effect of race or SES to vary systematically over time should
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adequately capture the different subgroup variances and Gompertz slopes. Whether it is
sufficient to use just one of these covariates rather than several to model differences in the
age-slope is unknown.

Figure 4: Historical patterns and Lee-Carter forecasts of S10 for both sexes
combined in the U.S.
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Source: Human Mortality Database (2009) and authors’ calculations. S10 is the standard deviation in ages at
death based on the period life table. The authors fit the Lee-Carter model as shown in equation (18) via singular
value decomposition applied to log age-specific mortality rates for both sexes combined below age 100 from the
HMD. Dashed lines represent the 2.5, 50, and 97.5 percentiles of the probabilistic forecast made assuming k(t)

follows a random walk with drift.

4.2.2 Accelerated failure time models

Other tools that researchers use when the proportional hazards assumption is violated
are accelerated failure time (AFT) models (Therneau and Grambsch, 2000). These are
parametric models of survival time rather than of the hazard, which take the form

log T = a + XB + ε (19)
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where X is a vector of covariates and ε is an error term. Interestingly, AFT models have
been discussed in the context of modeling mortality with multiplicative frailty (Hougaard,
1995), as well as in an alternative conceptualization of tempo effects in mortality (Ro-
dríguez, 2008).

But a proportional scaling of length of life between racial subgroups or across SES,
as in the AFT model, is even more misspecified than a proportional scaling of hazards
vis-à-vis the variance. While any scaling, additive or proportional, can provide adequate
fit to the mean lengths of life across subgroups, a proportional scaling implies that the
error in the level of length of life, namely the variance, becomes larger with longer mean
length. This is precisely the opposite of what we see in data.

While it is tempting to suggest a linear modeling of survival time as an alternative,
the error term in such a model would clearly be heteroscedastic. Without correction,
the robustness of inference would suffer, and like the standard Cox, a linear AFT model
would fail to model subgroup variances correctly.

4.2.3 Kaplan-Meier estimation

Another alternative to the Cox model is the fully nonparametric estimator of the sur-
vivorship function due to Kaplan and Meier (1958). Given the difficulties that standard
parametric models seem to face in capturing the variance in length of life, which is re-
flected in the slope of survivorship, a nonparametric approach would seem at first to be
ideal. One challenge is that the Kaplan-Meier estimator may sacrifice efficiency when
compared with parametric approaches (Miller, 1983). Another challenge is that identify-
ing which covariates ought to matter and how is left entirely up to the researcher.

4.2.4 Implications

Subgroup differences in variance in length of life and the varying age-slopes in mortality
rates they imply are a large problem for short panel models. Without correction, the Cox
proportional hazards model will fail to capture subgroup differences in life-span vari-
ance. Modeling time-varying covariates, which are really age-varying and thus exactly
what is needed, is one solution, and stratified Cox regression is another, but both will
reduce power. While AFT models appear if anything to worsen the modeling problem,
the Kaplan-Meier estimator would clearly improve it. The question is whether the effi-
ciency cost exceeds the costs of misspecification or reduced power, and the exact tradeoff
is likely to be application-specific. We intend this section merely as a renewed warning,
with new theoretical underpinnings, about a known but important issue in micro-level
modeling.
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5. Summary and discussion

Our primary message is that the Gompertz slope, the rate of increase in mortality through
age, has not been particularly constant across time, space, or characteristic, because nei-
ther has the variance in length of life. The Gompertz slope, which is often conceptualized
as the rate of aging, typically increases with higher status, although aggregate patterns
across OECD countries do not neatly fit this simplified view. The result of a steeper
Gompertz slope is a reduction in the variance around length of life, and it has often been
accompanied by a reduction in the Gompertz intercept, which raises life expectancy. Fu-
ture patterns can always diverge from historical experience, but recent developments in
mortality in advanced countries have typically reflected the past (Lee and Miller, 2001).

Variance in length of life is costly, whether viewed at the population level as aggregate
health inequality or at the individual level as a mean-preserving spread in how long we
live (Edwards, 2008). When rephrased as a faster rate of aging, a steeper Gompertz slope
may not sound like something good. But the compression of mortality around an ever-
increasing adult mode age at death is a reduction in a very large uncertainty, and it is
progress against arguably preventable premature death.

Historical data reveal a massive decrease in the uncertainty around adult length of life
concomitant with revolutions in nutrition, public health, and the prevention of communi-
cable disease. Although progress against variance in developing countries has continued
(Edwards, 2010), compression has largely stalled in industrialized countries since 1960
(Wilmoth and Horiuchi, 1999; Edwards and Tuljapurkar, 2005). As we discussed, a criti-
cal question for forecasting models is how future patterns in the variance of age at death
will unfold.

Given the long-term nonstationarity of variance, and the rapidity of its decline prior to
1960, it is questionable how helpful extrapolative forecasts may be. This seems especially
true given the pace of scientific advancement in the genetics of aging, an entirely new
field with the potential to change the way we age. In a recent review, de Magalhães,
Cabral, and Magalhães (2005) discuss how an array of genetic interventions in lab mice
affect the Gompertz slope. It is an unanswered but provocative question whether new
knowledge about may be able to rectangularize human survivorship even further in some
future gerontological revolution.

This is not to say that gains against the diseases of old age are the only possible source
of gains against variance, which is almost certainly not true. That variance is higher
among subgroups with lower SES is a fairly clear indication that we can make consid-
erable progress against variance by addressing the disease of socioeconomic inequality.
While there is no clear link between population S10 and income or educational inequality,
it is telling that we see racial differences in S10, which could in principle be driven by ge-
netic differences, that look almost identical to SES differences. This is a straightforward
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extension of the conclusion that racial differences in mortality seem to be a manifestation
of racial differences in SES (Preston and Taubman, 1994). But reducing inequality in SES
is likely to be a function of political will, which few demographers and health economists
would be comfortable forecasting.
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A Mathematical appendix

A1 General mortality model

Using an apostrophe to indicate a derivative with respect to age, we differentiate equa-
tion (3) to reveal

dφ

da
= φ′ = µ′ ` + µ `′. (20)

The change in the value of φ between age a1 and a slightly larger age a1 + x is the sum
of two terms. The first, x µ′(a) `(a), represents an increase in the probability due to the
increase with age of the death rate µ; the second, xµ(a) `′(a) = −x µ2(a), represents a
decrease in the probability due to the decrease with age of survivorship `(a).

At the modal age at death, which we will denote a0, density is maximized. Because
φ′ = 0 at the mode, the two components in equation (20) must be perfectly balanced.
Combining that with the fact that `′ = −µ ` and thus −µ `′ = µ2 ` reveals that

µ′(a0) =
dµ

da
= µ2(a0). (21)

If the mortality curve µ(a) were to steepen so that µ′ were higher at every age a, the mode
would have to shift to a younger age in order to maintain equality.

A second-order Taylor series expansion of φ(a) around the mode a0 is φ(a) = φ(a0)+
(1/2)φ′′ (a− a0)2, where φ′′ is d2φ/da2 evaluated at a = a0.There is no linear term be-
cause the first derivative is zero at a = a0. We rewite this as

φ(a) ≈ φ(a0)
(

1− (a− a0)2

2 σ2

)
, (22)

where σ2 is given by equation (7). Here φ′′(a0) is the (negative) second derivative of
φ(a) evaluated at the mode a0 and µ′′(a0) is second derivative of µ(a) at the mode a0.
When the distribution φ(a) is reasonably sharply peaked around the mode a0, we can
approximate it by the normal distribution given in equation (6).

The variance in age at adult death is approximately given by the σ2 appearing in equa-
tion (7). This variance depends on the curvature of the mortality function, i.e., whether
the slope of mortality steepens or shallows around the modal age. If the curve steepens,
then µ′′(a0) > 0 and the variance is smaller than for a curve that shallows at the mode.
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A2 The Gompertz model

The density of age at death for the Gompertz model is

φ(a) = µ(a)e−(µ(a)−µ0)/β . (23)

Because the Gompertz mortality rises exponentially, the density φ falls steeply at very
high ages. In addition, equation (21) shows that the mode satisfies

µ(a0) = β, (24)

so the modal age at death is

a0 =
1
β

log(β/µ0). (25)

These results and those following are summarized in Table 1. We expect a0 to decrease
if β increases, a property that holds for (25) so long as a0 > 1/β which is true for any
plausible human mortality pattern.

Applying equation (7) to the Gompertz case reveals a key result of this paper: the
variance in adult age at death for the Gompertz model is approximately given by equa-
tion (9).

A3 The logistic model

Integration of equation (10) shows that the probability density of deaths in the logistic
model is given by

φ(a) = (C + 1)1/β eβ a

(C + eβ a)(1+1/β)
. (26)

This density falls as a simple exponential e−a for high ages, much more slowly than for
the Gompertz model. For the logistic, the modal age at death is

a0 =
1
β

log (βC). (27)

Equation (7) reveals that the approximate variance is given by equation (11).
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A4 General mortality, multiplicative frailty

Given the mortality function in equation (12), the probability distribution of age at death
is

φ(a|Z) = Z µ(a) exp(−Z M(a)), (28)

with cumulative mortality M(a) defined as in equation (1).
The population probability distribution of age at death is the expectation over frailty,

φ(a) = E [φ(a|Z)] =
∫

g(z)φ(a|z) dz. (29)

Given equation (13), the modal age at death in the population must satisfy

µ′(a) = µ2(a)
h2

h1
. (30)

Note that if every frailty were equal to 1, we would have h2 = h1 and this equation would
reduce to our earlier equation (21). Also, we have

φ′′(a0) = h1 µ′′ + µ3

{
h3 − 3

(
h2

2

h1

)}
, (31)

where the hi are evaluated at the mode a0.

A5 General mortality, gamma multiplicative frailty

The gamma distribution in equation (15) is convenient, as Vaupel et al. pointed out,
because we can use it with any baseline mortality µ(a) to find an explicit expression for
the population average distribution of age at death, whose general form was given by
equation (29):

φ(a) = µ(a)
(

k

(k + M(a))

)k+1

. (32)

We can differentiate to find that the modal age at death is defined by the condition

µ′(a0) =
(

1 + s2

1 + s2M(a0)

)
µ2(a0). (33)

Notice that if all individuals had the same frailty, s2 = 0 and equation (33) would reduce
to the simpler equation (21). Qualitatively, the denominator on the right describes how
frailty alters the rate of change of average mortality and survival depending on how much
selection acts against more frail individuals. The magnitude of selection depends on both
the variance s2 in frailty, and the cumulative mortality hazard M(a). Strong selection
will act to decrease the modal age at death.
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A6 Gompertz mortality, gamma multiplicative frailty

The modal age at death for this model is found using equation (33) with Gompertz mor-
tality as given by equation (8), which yields the condition

µ(a0) = (β − s2µ0). (34)

This reveals an equation for the mode:

a0 =
1
β

log
(
β/µ0 − s2

)
. (35)

Compared with equation (25) for the standard Gompertz, which is shown in the first
column of the third row of Table 1, this equation reveals how frailty acts to reduce the
modal age at death.
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