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Formal Relationships 9

Sensitivity of life disparity with respect to changes in mortality rates

Peter Wagner 1, 2

Abstract

This article is concerned with sensitivity analysis of life disparity with respect to changes
in mortality rates. A relationship is derived that describes the effect on life disparity
caused by a perturbation of the force of mortality. Recently Zhang and Vaupel introduced
a “threshold age”, before which averting deaths reduces disparity, while averting deaths
after that age increases disparity. I provide a refinement to this result by characterizing
the ages at which averting deaths has an extremal impact on life disparity. The results are
illustrated using data for the female populations of Denmark in 1835, and for the United
States in 2005.

1 Max Planck Institute for Demographic Research, Konrad-Zuse-Straße 1, 18057 Rostock, Germany. E-mail:
wagner@demogr.mpg.de.
2 The author thanks Carl Schmertmann for thoughtful recommendations, including the interpretation of the
three summands in equation (5), that helped to improve and shorten the article, Joshua Goldstein for valuable
suggestions concerning its structure and presentation and Thomas Cassidy for proofreading and further help
with its shortening. Useful comments by James Vaupel and also Trifon Missov and Zhen Zhang are gratefully
acknowledged.
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1. Introduction

In keeping with Keyfitz’s idea that everybody dies prematurely, since every death deprives
the person involved of the remainder of his expectation of life (Keyfitz 1977:61-68), the
measure e† for the average life expectancy lost due to death has been widely studied. It
first appeared in Mitra (1978) and was developed further by Vaupel (1986) and recently
in Vaupel and Canudas-Romo (2003), Zhang and Vaupel (2008) and Shkolnikov et al.
(2009). Zhang and Vaupel (2009) initiated a new direction of analysis, studying the impact
on e† of a concentrated decrease in mortality at age a.

Life disparity is measured by life expectancy lost due to death

(1) e† =
∫ ∞

0

e(x) d(x) dx,

where e(x) is the remaining life expectancy at age x,

(2) e(x) =
1

`(x)

∫ ∞

x

(
y − x

)
d(y) dy =

1
`(x)

∫ ∞

x

`(y) dy,

`(x) = exp (−H(x)) is the probability of survival to age x, H(x) =
∫ x

0
µ(y) dy is the

cumulative hazard function and µ(x) is the age-specific hazard of death. Since nobody
lives forever, it is generally assumed that H is strictly increasing, attaining all non-negative
real numbers. The function d(x) = d

dx

(
1− `(x)

)
= `(x)µ(x) is the life table distribution

of deaths.
Goldman and Lord (1986: equations (6), (14)) and Vaupel (1986: equations (4), (5))

independently showed that life disparity (1) is the product of the life expectancy at birth
and the entropy of the life table

(3) e† = e(0)

(
−

∫∞
0

`(x) log `(x) dx∫∞
0

`(x) dx

)
.

In this article, I will formally derive and discuss a relationship concerning the effect
of a change in mortality at some age on life disparity.
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2. Relationship

Let ϕ(a) represent the change of e† caused by a reduction in mortality at age a (with
a precise definition thereof via a limit of derivatives given in the proof). The main
relationship in this article consists of two equivalent formulae ((4), (5)) for the function ϕ.

Theorem 1
The function ϕ(a), representing the change of e† caused by a reduction in mortality at
age a, satisfies the relationship

(4) ϕ(a) = −
∫ ∞

a

`(x)
(
1 + log `(x)

)
dx

and, equivalently,

(5) ϕ(a) = `(a)
(
H(a) e(a)− e(a) + e†(a)

)
,

where e†(a) denotes life expectancy lost due to death among people surviving to age a,

(6) e†(a) =
1

`(a)

∫ ∞

a

e(x) d(x) dx.

Furthermore, ϕ has the following three properties:

(i) Monotonicity
Let ã, the age of cumulative hazard unity, be defined via H(ã) = 1. Then ϕ is strictly
increasing on [0, ã] and strictly decreasing and strictly positive on [ã,∞), having a global
maximum of ϕ(ã) = exp(−1)e†(ã) at a = ã and a local minimum of ϕ(0) = e†(0)−e(0)
at a = 0. More precisely,

(7)
d

da
ϕ(a) = `(a)

(
1−H(a)

)
.

(ii) Curvature
Let a∗ be defined by H(a∗) = 2. Then ϕ is strictly concave on [0, a∗] and strictly convex
on [a∗,∞). More precisely,

d2

da2
ϕ(a) = d(a)

(
H(a)− 2

)
.

(iii) Asymptotic Behaviour

lim
a→∞

ϕ(a) = 0.
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Zhang and Vaupel (2009) showed that, if the life table entropy (cf. (3)) satisfies
e†/e(0) < 1, then there exists a positive “threshold age” a† between the regions of “early”
ages a < a†, in which the effect of averting deaths on life disparity is negative, and “late”
ages a > a†, in which this effect is positive. If e†/e(0) = 1, then a† = 0, and the effect is
positive at all ages other than zero. Finally, if e†/e(0) > 1, then a† does not exist, and the
effect is positive everywhere. Refining these results, Theorem 1(i) highlights some helpful
monotonicity properties and draws attention to ã and 0, the ages of extremal effect on life
disparity caused by averting deaths.

Remark 1
Recall definition (1) and think of e† as the sum of three integrals, by partitioning the range
of integration into the ages below, at and above a. It turns out that the three summands
in equation (5) correspond to the effects of a mortality reduction at age a on the three
integrals, which I shall refer to as the “early”, “instant” and “late” effect, respectively:
• Early: At ages x < a, deaths d(x) are unchanged, and life expectancies of survivors

e(x) increase, which increases disparity by `(a)H(a) e(a).
• Instant: At age x = a, deaths d(x) decrease, and life expectancy of survivors e(x) is

unchanged, which decreases disparity by `(a) e(a).
• Late: At ages x > a, deaths d(x) increase, and life expectancies of survivors e(x) are

unchanged, which increases disparity by `(a) e†(a).

3. Proof

Theorem 1, the relationship

In the general case, the force of mortality µ changes by some function ∆µ, with a small
step s:

µ(x, s) = µ(x) + s∆µ(x),

µs(x, s) =
∂

∂s
µ(x, s) = ∆µ(x).

(8)

Similarly, for the s-dependent survival function,

`(x, s) = exp
(
−

∫ x

0

µ(y, s) dy

)
,

`s(x, s) =
(
−

∫ x

0

∆µ(y) dy

)
`(x, s)
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Noting e† = e†(0) (cf. (1), (6)), by equation (3),

e†(0, s) = −
∫ ∞

0

`(x, s) log `(x, s) dx.

Hence

e†s(0, s) = −
∫ ∞

0

`s(x, s)
(
1 + log `(x, s)

)
dx

= −
∫ ∞

0

(
−

∫ x

0

∆µ(y) dy

)
`(x, s)

(
1 + log `(x, s)

)
dx

=
∫ ∞

0

∆µ(y)
(∫ ∞

y

`(x, s)
(
1 + log `(x, s)

)
dx

)
dy.

Thus the functional derivative of disparity with respect to mortality change ∆µ is

e†s(0, 0) =
∫ ∞

0

∆µ(y)
(∫ ∞

y

`(x)
(
1 + log `(x)

)
dx

)
dy.

Keeping mortality reductions at age a in mind, when ∆µ is a negative step function in a
small neighbourhood around age a, such that its integral equals minus unity; for example,
and from now on, ∆µ(y) = −1/ε for y ∈ [a, a + ε] and zero elsewhere, then

e†s(0, 0) =
1
ε

∫ a+ε

a

(
−

∫ ∞

y

`(x)
(
1 + log `(x)

)
dx

)
dy ∼ −

∫ ∞

a

`(x)
(
1+log `(x)

)
dx

or, more precisely, and hereby defining ϕ(a) as a limit of derivatives,

ϕ(a) = lim
ε→0

e†s(0, 0) = −
∫ ∞

a

`(x)
(
1 + log `(x)

)
dx.

Finally, note that

−
∫ ∞

a

`(x)(1 + log `(x)) dx = `(a)
(
−

∫ ∞

a

`(x)
`(a)

(
log `(a) + 1 + log

`(x)
`(a)

)
dx

)

= `(a)
(
H(a) e(a)− e(a) + e†(a)

)
.
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Theorem 1, part (i)
By equation (5), ϕ is strictly positive on [ã,∞). Equation (7) follows from equation (4),
so that the first derivative of ϕ is strictly positive on [0, ã) and strictly negative on (ã,∞).
Thus, ϕ is strictly increasing on [0, ã] and strictly decreasing on [ã,∞). Consequently, ϕ
has a global maximum at a = ã and a local minimum at a = 0 with

ϕ(ã) = `(ã) e†(ã) = exp(−1) e†(ã) and ϕ(0) = e†(0)− e(0).

Theorem 1, part (ii)
Differentiating equation (7) with respect to a,

d2

da2
ϕ(a) = −d(a)

(
1−H(a)

)− `(a)µ(a) = d(a)
(
H(a)− 2

)
.

Hence the second derivative of ϕ is strictly negative on [0, a∗) and strictly positive on
(a∗,∞). Thus, ϕ is strictly concave on [0, a∗] and strictly convex on [a∗,∞).

Theorem 1, part (iii)
Clearly, both the “instant” and “late” effect (cf. (2), (6)) approach zero, that is,

lim
a→∞

(
−`(a) e(a)

)
= 0 and lim

a→∞

(
l(a) e†(a)

)
= 0,

so that, by equation (5), it remains to show

lim
a→∞

(
`(a)H(a) e(a)

)
= 0

for the “early” effect `(a) H(a) e(a). Using integration by parts,

e† =
∫ ∞

0

e(x) d(x) dx =
∫ ∞

0

µ(x)
(
`(x) e(x)

)
dx

=
(

lim
x→∞

(
H(x) `(x) e(x)

)
− 0

)
+

∫ ∞

0

H(x) `(x) dx,

where, by reversing the order of integration,
∫ ∞

0

H(x) `(x) dx =
∫ ∞

0

(∫ x

0

µ(y) dy

)
`(x) dx =

∫ ∞

0

(∫ ∞

y

`(x) dx

)
µ(y) dy

=
∫ ∞

0

`(y) e(y)µ(y) dy =
∫ ∞

0

e(y) d(y) dy = e†.
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4. History and related results

For a concise introduction to functional derivatives see, for example, Arthur (1984) and
Frigyik, Srivastava, and Gupta (2008), with applications of the mathematical techniques
used here to demography and subjects such as engineering, respectively.

Recall that the perturbation (8) for my specific choice of ∆µ represents an absolute
reduction of the death rate on the age interval [a, a + ε]. A reduction of the death rate on
the same interval relative to its value at age a is given by

µ̃(x, s) = µ(x) + s µ(a)∆µ(x) = µ(x, s µ(a)).

Then

g(a) = lim
ε→0

ẽ†s(0, 0) = lim
ε→0

(
∂

∂s
ẽ†(0, s)

∣∣∣∣
s=0

)
= lim

ε→0

(
∂

∂s
e†(0, sµ(a))

∣∣∣∣
s=0

)

= lim
ε→0

(
µ(a)

∂

∂s
e†(0, s)

∣∣∣∣
s=0

)
= µ(a) lim

ε→0
e†s(0, 0) = µ(a)ϕ(a)

= d(a)
(
H(a)e(a)− e(a) + e†(a)

)
,

which is equation (2) in Zhang and Vaupel (2008). Letting

k(a) = H(a) e(a)− e(a) + e†(a)

(Zhang and Vaupel 2008: equation (3)), motivated by data for Japanese females in 1950,
1970 and 1990, Zhang and Vaupel discuss implications of the existence of a unique root
of k, a so-called “threshold age”, for g, the “age-specific impact of survival improvement
on lifespan disparity”.

In Zhang and Vaupel (2009), a formal proof for the existence of at most one root of k
is given. Their derivation of the relationship for k (Zhang and Vaupel 2009: equation (1))
is based on an absolute “concentrated decrease in mortality at age a”, in my notation
corresponding to

∂

∂s

(
lim
ε→0

e†(0, s)
)∣∣∣∣

s=0

,

which turns out to equal

lim
ε→0

(
∂

∂s
e†(0, s)

∣∣∣∣
s=0

)
= ϕ(a) = `(a) k(a).
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Although in this case, the order of the two limiting processes does not matter, their
demographic interpretations differ. First differentiating and then letting ε tend to zero
describes the impact of an absolute mortality decrease over a narrower and narrower age
range starting at age a. However, first letting ε tend to zero and then differentiating raises
the challenge of having to interpret cumulative hazard functions with a downward step,

Ha,s(x) = H(x)− s · 1[a,∞)(x)

(where 1[a,∞)(x) is one for x ≥ a and zero otherwise), and negative death rates, possibly
by (rather hypothetically) resurrecting some of a cohort’s decedents. The latter approach
of Zhang and Vaupel (2009) was also taken in Wagner (2010), where the new value of life
disparity (corresponding to the Ha,s(x) above) was shown to satisfy

e†a,s = e† +
(
exp(s)− 1

)
`(a)

(
H(a) e(a)− e(a) + e†(a)

)
,

from which it follows immediately that

∂

∂s
e†a,s

∣∣∣∣
s=0

= `(a)
(
H(a) e(a)− e(a) + e†(a)

)
= ϕ(a).

Regardless of the origin of the simple relation ϕ = ` ·k, implying that ϕ and k always
have the same sign, it is striking how much more information can be obtained for ϕ, in
terms of monotonicity, curvature, and asymptotic behaviour, as summarised in Theorem 1.

5. Applications

To illustrate the theoretical results, I have computed several relevant quantities for life
tables from the Human Mortality Database (2010). Since the function ϕ is very similar
for populations of one and the same era, essentially sharing the same kind of mortality
schedule, I concentrate on displaying ϕ for a contemporary against a historical table. In
my Figure 1, the blue curve represents ϕ for the female population of the United States
in 2005, where a† ∼ 78.59 and ã ∼ 87.42, whereas the red curve represents ϕ for the
population of Danish females in 1835, where a† ∼ 34.02 and ã ∼ 60.36. Note that my
Figure 1 concurs with Figures 1 and 2 of Zhang and Vaupel (2009).

Regardless of the country or era of a particular mortality schedule, the shape of the
function ϕ, representing the effect of a mortality reduction at some age on life disparity,
and which can be interpreted as the sum of the “early”, “instant” and “late” effect on
disparity, is always as governed by Theorem 1. Indeed, the derivative of the sum of
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Figure 1: Change in life disparity (expressed via function (5)) as a function
of the age at which the mortality rate is reduced. The blue curve
(right) represents data from the Human Mortality Database 2010
for US-females in 2005, while the red curve (left) corresponds to
Danish females in 1835.

the positive “early” and “late” effect equals −H(a) `(a), while the derivative of the
negative “instant” effect is `(a). So while initially the increase of the “instant” effect
dominates the decrease of the sum of the other two effects, implying an increase of ϕ,
those roles are reversed at the age ã of cumulative hazard unity, from which ϕ decreases
and asymptotically approaches zero. Interestingly, ã is both the age when ϕ reaches its
maximum and when the “early” and “instant” effect cancel each other. At age zero, there
is no “early” effect. So provided that the negative “instant” effect dominates the positive
“late” effect (which is equivalent to the entropy being less than one), ϕ(0) is negative, and
there is a unique age a†, when all three effects cancel each other; that is, ϕ(a†) = 0.
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