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Research Article

Schelling’s Segregation Model: Parameters, scaling, and aggregation

Abhinav Singh 1

Dmitri Vainchtein 2

Howard Weiss 3

Abstract

Thomas Schelling proposed a simple spatial model to illustrate how, even with relatively
mild assumptions on each individual’s nearest neighbor preferences, an integrated city
would likely unravel to a segregated city, even if all individuals prefer integration. This
agent based lattice model has become quite influential amongst social scientists, demogra-
phers, and economists. Aggregation relates to individuals coming together to form groups
and Schelling equated global aggregation with segregation. Many authors assumed that
the segregation which Schelling observed in simulations on very small cities persists for
larger, realistic sized cities. We describe how different measures can be used to quantify
the segregation and unlock its dependence on city size, disparate neighbor comfortabil-
ity threshold, and population density. We develop highly efficient simulation algorithms
and quantify aggregation in large cities based on thousands of trials. We identify distinct
scales of global aggregation. In particular, we show that for the values of disparate neigh-
bor comfortability threshold used by Schelling, the striking global aggregation Schelling
observed is strictly a small city phenomenon. We also discover several scaling laws for
the aggregation measures. Along the way we prove that in the Schelling model, in the pro-
cess of evolution, the total perimeter of the interface between the different agents always
decreases, which provides a useful analytical tool to study the evolution.
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E-mail: dmitri@temple.edu.
3 School of Mathematics and Center for Nonlinear Science, Georgia Tech, USA, E-mail:
weiss@math.gatech.edu.

http://www.demographic-research.org 341



Singh et al.: Schelling’s Segregation Model: Parameters, scaling, and aggregation

1. Introduction

In the 1970s, the eminent economic modeler Thomas Schelling proposed a simple space-
time population model to illustrate how, even with relatively minimal assumptions con-
cerning every individual’s nearest neighbor preferences, an integrated city would likely
unravel to a segregated city, even if all individuals prefer integration (Schelling 1969;
Schelling 1971a; Schelling 1971b; Schelling 2006). His agent-based lattice model has
become quite influential amongst social scientists, demographers, and economists. Cur-
rently, there is a spirited discussion on the validity of Schelling-type models to describe
actual segregation, with arguments both for (e.g., Young 1998; Fossett 2006), and against
(e.g., Massey 1990; Laurie and Jaggi 2003), and a few authors have used and extended
the Schelling model to address actual population data (Clark 1991; Bruch and Mare 2006;
Benenson et al. 2006; Sander, Schreiber, and Doherty 2000; Clark and Fossett 2008). The
few examples of quantitative analyses of such models are (Pollicott and Weiss 2001; Fos-
sett 2006; Gerhold et al. 2008). Recently, Zhang (2004) proved analytically that, for
certain wedge-like utility functions and with additional random noise, the equilibrium
states possess a high degree of segregation.

Aggregation relates to individuals coming together to form groups or clusters, and
Schelling equated global aggregation with segregation. Many authors assume that the
striking global aggregation observed in simulations on very small ideal “cities" persists
for large, realistic size cities. A recent paper (Vinkovic and Kirman 2006) exhibits final
states for a small number of model simulations of a large city, and some final states that
do not exhibit significant global aggregation. However, quantification of this important
phenomenon is lacking in the literature, presumably due in part to the huge computational
costs required to run simulations using existing algorithms. We develop highly efficient
and fast algorithms that allow us to carry out many simulations for many sets of parame-
ters and to compute meaningful statistics of the measures of aggregation.

The objective of this paper is to quantify the aggregation and unlock its dependence
on city size, disparate neighbor comfort threshold, and population density. One of the
measures is the total perimeter of a configuration: the total number of contacts between
the agents of different kind, adjusted to the presence of empty spaces. We prove that as
the system evolves, the total perimeter decreases at every step. This provides a useful
analytical tool to study the evolution: it necessitates that the evolution of the Schelling
model always converges to a limit configuration after a finite number of time steps. We
identify distinct scales of global aggregation, and in particular, we show that for the values
of disparate neighbor comfort threshold used by Schelling, the striking global aggrega-
tion Schelling observed is strictly a small city phenomenon. We also discover several
remarkable scaling laws for the aggregation measures.

342 http://www.demographic-research.org



Demographic Research: Volume 21, Article 12

1.1 Description of the Model

We expand Schelling’s original model 4 to a three parameter family of models. The phase
space for these models is the N × N square lattice with periodic boundary conditions
(opposite sides identified). We consider two distinct populations, that, in Schelling’s
words, refer to “membership in one of two homogeneous groups: men or women, blacks
and whites, French-speaking and English speaking, officers and enlisted men, students
and faculty, surfers and swimmers, the well dressed and the poorly dressed, and any
other dichotomy that is exhaustive and recognizable” (Schelling 2006). We denote by
B (black squares) and R (red squares, appear grey on black and white printing) these
two populations. See Fig. 1. Together these agents fill up some of the N2 sites, with
V remaining vacant sites (white squares). Each agent has eight nearest neighbors, cor-
responding to Moore, or Queen, neighborhood. Different neighborhoods were studied
in different papers (see, e.g, Fossett 2006; Clark and Fossett 2008, where the size of the
neighborhood was referred to as ‘vision’). Fix a disparate neighbor comfort threshold
T ∈ {0, 1, . . . , 8}, and declare that a B or R is happy if T or more of its nearest eight
neighbors are B’s or R’s, respectively. Else, it is unhappy.

Figure 1: A: A simulation of Schelling’s original model with N = 8;
B: Our simulation with N = 100.

A B

4 Different authors frequently consider slightly different versions of Schelling’s original model, i.e., different
ways of moving boundary agents. All versions seem to exhibit the same qualitative behaviors, and thus we refer
to the Schelling model.
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Demographically, the parameter N controls the size of the city, v = V/N2 controls
the population density or the occupancy ratio (BusinessLocate 2009), and T is an “agent
comfort index” that quantifies an agent’s tolerance to living amongst disparate nearest
neighbors.

In choosing the algorithm of evolution we followed the protocol introduced in the
original Schelling paper (Schelling 1969) and later used in Portugali, Benenson, and Omer
(1994) and Benenson et al. (2006). We begin the evolution by choosing an initial con-
figuration (described in Sect. 3) and randomly selecting an unhappy B and a vacant site
surrounded by at least T nearest B neighbors. Provided this is possible, interchange the
unhappy B with the vacant site, so that this B becomes happy. We then randomly select an
unhappy R and a vacant site having at least T nearest neighbors of type R. Provided this
is possible, we interchange the unhappy R with the vacant site, so that R becomes happy.
We repeat this iterative procedure, alternating between selecting an unhappy B and an
unhappy R, until a final state is reached, where no interchange is possible that increases
happiness. For some final states, some (and in some cases, many) agents may be unhappy,
but there are no allowable switches.

For the sake of completeness, we carried out simulations using other agent selection
protocols, including random selection schemes. We observed no significant differences
in the final states using the other selection schemes. This supports the claim in Young
(1998) that the fine details of the evolution have negligible influence on the structure of
the final states.

2. Schelling’s segregation is a small city phenomenon

Schelling considered the cases city size N = 8, neighbor comfort threshold T = 3, and
vacancy ratio v = 33%. For T = 3 or 4, and v = 0, a “checkerboard" configuration of
B’s and R’s (imagine placing B’s on the red squares and R’s on the black squares of an
actual checkerboard) is a final state, since all agents have four like nearest neighbors.

To generate his initial configurations, Schelling begins with a checkerboard config-
uration without periodic boundary conditions and randomly removes approximately one
third of the B’s and R’s, keeping equal numbers of both agents (Schelling 2006). We refer
to the result as a deleted checkerboard configuration. Removing these agents makes some
of the remaining agents unhappy and drives the evolution. Several authors have observed
that removing such a large percentage of agents is unnatural, but it is crucial to attain
aggregation in Schelling’s model. Removing fewer agents results in a final configuration
close to the initial configuration. Finally, Schelling modifies the deleted checkerboard by
randomly adding a total of 5 B’s and 5 R’s in vacant spaces. Such an initial configuration
is assumed to be a proxy for a nearly integrated city.
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The final state of a typical run of Schelling’s original model system is presented in
Fig. 1A. Schelling performed many simulations by hand using an actual checkerboard,
and observed that the final states presented a significant degree of global aggregation. He
equated the global aggregation with segregation of a city.

In this paper, we investigate whether the global aggregation that Schelling observed
for very small lattices persists for larger lattices. In Fig. 1B, we present a characteristic
final state for our simulations with city size N = 100. Comparing Figs. 1A and 1B, one
can see a striking qualitative difference between the two final states. While there is some
local aggregation in the final state with N = 100, there is no global aggregation. Visually
inspecting this and other final states, one immediately sees that the global aggregation
observed by Schelling is a small lattice phenomenon.

To quantify the difference in aggregation between a small city (N = 8) and a larger
city (N = 100) we used a combination of two aggregation measures: the number of clus-
ters in the final state of the model and the normalized average size of individual clusters
(see Sect. 4.1 for a detailed description of these and several other measures of aggrega-
tion). We determine the normalized average size of a cluster by dividing the average size
of a cluster by the total number of agents in the city. The latter determines the proportion
of a city covered by an individual cluster and provides a way to compare aggregation be-
tween cities of different sizes. Figure 2 shows the mean values of these two aggregation
measures in the final states of cities of two sizes (N = 8 and 100). We compute the mean
values of the two measures based on 100 trials for each choice of the vacancy ratio v and
neighbor comfort threshold T = 3. We observe that the normalized average size of a
cluster in the large city is smaller than one in a small city. This implies that an individual
cluster in a large city covers a smaller proportion of the city as compared to a cluster in
a smaller city. Most final states of the small city are segregated into two clusters for all
choices of the vacancy ratio while the number of clusters in the large city increases from
22 for a city with 24% empty locations to 55 for a city with 33% empty locations. As
we move from a small city to a large one, the relative size of a cluster in the final state
decreases and the number of clusters increases. This shows that the large scale global
aggregation observed by Schelling is strictly a small city phenomenon and does not occur
for larger cities.

In Sections 3 through 5 we quantify the global aggregation using several new mea-
sures, and we analyze the structure of the final states for different values of neighbor
comfort threshold T , vacancy ratio v, and city size N .
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Figure 2: Aggregation measures to distinguish between a small city (N = 8)
and a large city (N = 100) for constant neighbor comfort thresh-
old T = 3 and different values of vacancy ratio v.
A: Normalized average size of an individual cluster.
B: Number of clusters in the final state of a city.

3. Simulations

We are the first authors to quantify aggregation in a large city based on a large number of
simulations. We develop highly efficient algorithms to simulate the model and quantify
the aggregation. We currently need approximately one minute to run a single simulation
for a city of size N = 100 and we ran more then nine thousand simulations for this
manuscript. We achieve this boost in speed by coming up with innovative ways to de-
termine the happiness of each agent and to find a suitable location for an unhappy agent.
We exploit the ability of modern software packages such as NumPy (Oliphant 2006) to
efficiently manipulate matrices; we can now compute properties of all agents in a city si-
multaneously thus escaping the slow process of dealing with each agent individually. The
speed at which we find an unhappy agent in the city and a suitable location for it deter-
mines the speed of the simulation. Naively looking at each agent in the city to determine
if it is unhappy and testing each empty location to determine if it is a suitable location for
an unhappy agent, makes the simulation much slower. A much more efficient approach
is to construct matrices highlighting the unhappy agents in the city and suitable locations
for unhappy agents. The unhappiness of an agent and the suitability of a location are both
based on the number of similar neighbors in the neighborhood of a given location. As
an example of the efficiency gained by matrix methods, we outline the steps to determine
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the number of R agents surrounding each agent in the city simultaneously. In our ‘city
matrix’, an R agent is represented by 1, a B agent by -1 and an empty location by 0.
Therefore, the problem of determining the number of surrounding R agents is reduced to
adding up the 1’s in the neighborhood of each agent and ignoring the -1’s. We ignore the
-1’s by simply finding the absolute value of each element in the city matrix; this converts
the -1’s into 1’s but leaves the 1’s and 0’s unchanged. We call this modified matrix the
‘absolute value matrix’. When we add the city matrix and the absolute value matrix, all
the -1’s are gone and the sum of all the elements gives the number of R agents in the
8-point neighborhood. Similar methods can be used to speed up the process of finding
suitable locations for unhappy agents and computing aggregation measures.

We study the dynamics for large lattices and present our results mostly for city size N =
100. Figures 2-7 are all based on N = 100. In the last section, we discuss the cases
N = 50 and N = 200, and show that N greater than 100 does not lead to qualitatively or
quantitatively different states and phenomena. We restrict our discussion to cities having
an equal number of B’s and R’s. We will report the results on the dynamics with different
proportions of B’s and R’s in a separate manuscript (Singh, Vainchtein, and Weiss 2009).

We consider neighbor comfort threshold T = 3, 4, 5 and vacancy ratio v between 2%
and 33%. The system does not evolve very much for other values of T : for T = 1, 2
almost all of the agents are satisfied in most of the initial configurations, while for T ≥ 6
there are almost no legal switches. Values of v larger than 33% correspond to unrealistic
environments. For each pair of parameters T and v, we perform 100 simulations. This
number of simulations was chosen to ensure a 95% confidence interval for parameter
estimation. The Central Limit Theorem provides confidence intervals for the mean values
of the aggregation measures.

We choose the initial configuration by starting with a checkerboard with periodic
boundary conditions. Demographically, a checkerboard configuration is a maximally in-
tegrated configuration. We then randomly remove half the intended vacant locations v/2
of both B’s and R’s (thus keeping equal numbers of both agents). We randomly permute
agents in two 3 × 3 blocks. Alternatively, we could choose a completely random initial
configuration. In general, except for small values of v, the final states are quantitatively
similar to the ones obtained using the Schelling-like initial conditions.

In Figs. 3-5, we present characteristic final states for different values of T and v.
Visually, the aggregation in the final states with fixed v are substantially different than in
the final states with fixed T .
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Figure 3: Characteristic final states for neighbor comfort threshold T = 3
for different vacancy ratios v:
A: v = 2%, B: v = 6%, C: v = 10%, D: v = 15%,
E: v = 20%, F: v = 24%, G: v = 28%, H: v = 33%.

A B C

D E F

G H
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Figure 4: Characteristic final states for neighbor comfort threshold T = 4
for different vacancy ratios v:
A: v = 2%, B: v = 6%, C: v = 10%, D: v = 15%,
E: v = 20%, F: v = 24%, G: v = 28%, H: v = 33%.

A B C

D E F

G H
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Figure 5: Characteristic final states for neighbor comfort threshold T = 5
for different vacancy ratios v:
A: v = 2%, B: v = 6%, C: v = 10%, D: v = 15%,
E: v = 20%, F: v = 24%, G: v = 28%, H: v = 33%.

A B C

D E F

G H
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4. Analysis

4.1 Measures of Aggregation

In Figs. 3-5, aggregation appears to be a multifaceted phenomenon. One can observe that
the states are visually quite different. However, to draw any quantitative conclusions and
to arrive to any meaningful demographic observations, we need several measures (or in-
dices) to describe the states. We begin the current section by defining several measures of
aggregation that enable us to quantify this observation. In his papers, Schelling used two
measures of aggregation:

1. The ratio of unlike to like neighbors that is called the [u/l]-measure. For a site on
the lattice with coordinates (i, j) we define:

[u/l]i,j =
qi,j + wi,j

si,j
,

where si,j , qi,j , and wi,j are the number of like, unlike, and vacant neighbors of the
agent located at (i, j), respectively. We define the sparsity 〈[u/l]〉 of a cluster by
averaging the [u/l]-measure over the given cluster.

2. The number of agents that have neighbors only of the same kind (note that this
definition excludes the vacant spaces as well). The abundance of such agents in-
dicate the presence of large, “solid” clusters. This quantity is the most useful in
quantifying between the states with T = 3 and T = 4. We call the latter quantity
seclusiveness and denote by N0.
Since the publication of Schelling’s papers, sociologists have devised new measures
to quantify different aspects of segregation, including: evenness, exposure, cluster-
ing, concentration and centrality (Duncan and Duncan 1955; Massey and Denton
1988; Massey, White, and Phua 1996). Exposure relates to the degree of contact
between agents of different kinds and clustering relates to the degree of contiguity
among agents of one kind. In this paper we concentrate on the exposure and clus-
tering aspects of segregation. Along with Schelling’s two measures of exposure, we
introduce an additional measure of exposure, as well as two measures of clustering.

3. The adjusted perimeter per agent p of the interface between the different agents
suitably adjusted for the vacant spaces. The perimeter P is defined as twice the total
number of R-B connections plus the total number of connections between R and B
agents with vacant spaces. Demographically, the adjusted perimeter, p = P/N2, is
the average number of contacts an agent has with the opposite kind or with vacant
sites. In the segregation literature, the perimeter is related to the exposure index
(see, e.g., Massey and Denton 1988).
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A key observation is that p is a Lyapunov function, i.e., a function defined on every
configuration which is strictly decreasing along the evolution of the system until it
reaches a final state. Thus the system evolves to minimize the adjusted interface
between the R and B agents. The final states are precisely the local minimizers of
the Lyapunov function, subject to the threshold constraint. This Lyapunov function
is also the Hamiltonian for a related spin lattice system related to the Ising model
(Simon 1993). Such a notion of p was motivated by analogies of these models with
the physics of foams. Note that for wedge-like utility functions, such as the ones
considered in (Zhang 2004), p is not a Lyapunov function, even in the absence of
noise.
Let us show that in the process of evolution every legal switch makes P smaller.
Suppose we switch an R and a V. Before the switch, suppose R had B1, R1, and
V1, of B, R, and V neighbors, respectively. Similarly, the numbers for the V agent
are D2, R2, and V2. Then the value of P before and after the switch are:

Pinitial = 2B1 + V1 + B2 + R2; Pfinal = 2B2 + V2 + B1 + R1.

Thus,
Pfinal − Pinitial = B2 + V2 + R1 − (B1 + V1 + R2) .

Taking into account that B1 + V1 + R1 = B2 + V2 + R2 = 8, we arrive at
Pfinal − Pinitial = 2 (R1 −R2) < 0.

Similarly, if the switch between R and B, we have
Pfinal − Pinitial = 2 (R2 −R1) + 2 (B1 −B2) < 0.

The main consequence of the presence of a Lyapunov function is that it guarantees
the convergence of the Schelling model to a final steady state. Moreover, since P
decreases by at least 2 on every switch and P cannot be negative, there can only be
finitely many moves before the algorithm converges to an equilibrium state.

4. The scale, or maximum diameter of the connected components (which we hence-
forth call clusters) L. The measure L is defined as the side length of the smallest
square needed to cover every cluster. For configurations consisting of mostly com-
pact clusters, the maximum diameter, L = max(Li), defines the scale of aggre-
gation. Depending on the value of L, we can say that, in terms of the analogies
suggested in (Clark and Fossett 2008), the aggregation happens on the neighbor-
hood (small L), school district (medium L), or global, city-wide (large L) scale.
Checkerboard configurations and configurations consisting of compact clusters are
two extremes; for the former L = N . The diameter of a cluster can be easily com-
puted as the larger between the number of rows that contain an agent belonging to
the cluster and the number of columns that contain an agent belonging to the cluster.
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5. The total number of clusters in a configuration NC . This intuitively appealing mea-
sure of aggregation is useful to describe final states having mostly large compact
clusters. For such systems, NC and L are the quantities that attract the viewer’s at-
tention first. To see its limitation, observe that “the maximally integrated” checker-
board configuration with v = 0 has just 1 + 1 = 2 clusters. The reason for that is
that if two squares are considered to belong to the same cluster if they touch by a
side or a vertex, clusters may be intermingled. The quantity NC is the most useful
for configurations consisting of compact clusters of a similar size. To study config-
urations such as the final states for T = 5, a more useful quantity is the number of
clusters that have greater then, say, Mmax/10 agents, where Mmax is the number
of agents in the largest cluster of a given kind.

In Fig. 6, we plot average values of aggregation measures (2)-(5) introduced above
for the final states with T = 3, 4, 5 and several values of v. The linear relationships of
these disparate aggregation measures on population density seem remarkable. Often there
is some deeper meaning behind such linear scaling, such as critical exponents in phase
transitions, that may lead to construction of theoretical explanation of the phenomena.

4.2 Global aggregation dependence on the neighbor comfort threshold T

From Figs. 3-5, one observes that:
1. the final states with neighbor comfort threshold T = 3 are very sparse, with a great

deal of interweaving between both kinds of agents and vacant spots;
2. the final states with T = 4 consist of compact clusters (that look like solid objects);

and, finally,
3. the final states with T = 5 consist of one (for each type) huge cluster together with

a small number of remaining agents scattered around.
Varying the density v does not radically alter the qualitative structure of the final states.
We now quantify the aggregation for each value of T , as v varies between 2% and 33%.

4.2.1 T = 3: sparse clusters

In Fig. 3 we present typical final states for neighbor comfort threshold T = 3 and differ-
ent values of vacancy ratio v. Unlike the final states for Schelling’s original model with
city size N = 8 (see Fig. 1A) that consists of just one or two separate domains of R and
B agents, the final states for N = 100 and v = 33% (Fig. 3H) contain many clusters.
The striking qualitative difference is also quantified by the relatively large values of the
normalized perimeter, p (see Fig. 6D).
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Figure 6: Statistics of four key measures of aggregation of final states for
neighbor comfort threshold T = 3 (red triangles), T = 4 (green
squares), and T = 5 (blue circles) for different vacancy ratio v:
A The scale of aggregation L;
B The number of clusters NC;
C The number of agents with eight like nearest neighbors N0;
D Normalized perimeter p.

The sparsity of the final states with T = 3 is due, in part, to large blocks of the initial
checkerboard configuration that remain unchanged during the evolution. We call this
phenomenon the super-stability of the checkerboard. Every agent is not just happy, but
has one like neighbor to “spare”. Thus, it takes a large perturbation to make a given agent
move and, therefore, only agents close to the initially perturbed sites move. Consequently,
Schelling required a large density of vacant spaces v (33%) to overcome checkerboard
super-stability. Following the panels of Fig. 3, one can see that as v decreases, larger and
larger parts of the initial configuration remain unchanged during the evolution.

We observe that for neighbor comfort threshold T = 3, larger values of vacancy ratio v
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result in larger clusters, and thus lead to greater global aggregation. The number of clus-
ters in the final states, NC , decreases as v decreases (Fig. 6B) and the dependence is
almost cubic. The value for the slope in Fig. 6B corresponding to T = 3 is 2.86 and the
value 3 is well within the error bars. We can group the cubic dependence of the number
of clusters and the previously noted linear dependence of aggregation measures on pop-
ulation density under the category of scaling laws. We use the term “scaling law” in the
same sense as it is used in physics and biology: as a particularly simple relation (e.g.,
linear, cubic, etc.) between two important variables. Often there is deep science behind
scaling laws (such as critical exponents in phase transitions and species-area relationships
in ecology) and attempts to explain them often lead to a theoretical explanation of the
phenomena.

The seclusiveness measure, N0, is a monotonically decreasing function of v: as v
decreases, the final state approaches the checkerboard and, naturally, almost all the agents
have some contacts with other agents. Similarly, the smaller the value of v, the larger the
normalized perimeter, p. The values of p around 4 for large values of v indicate that most
of the agents have in their 8-point neighborhoods around 2−3 vacancies and 1 or 2 agents
of a different kind. This conclusion is supported by the visual inspection of Fig. 3F-H.
Therefore, the low comfort threshold results for an individual agent in the presence of the
vacancies in the neighborhood, rather than the agents of a different kind.

4.2.2 T = 4: compact clusters and mesoscale aggregation

In Fig. 4 we present typical final states for neighbor comfort threshold T = 4 and different
values of vacancy ratio v. Increasing T from 3 to 4 eliminates the checkerboard super-
stability phenomenon and results in strikingly different structures of aggregation in final
states. Namely, every final state consists of relatively small number of compact clusters,
that clearly depends on v.

For relatively large values of v, such final states exhibit mesoscale aggregation and,
for small values of v, macroscale aggregation. There seems to be no canonical way to
separate the two types of aggregation. Our criterion is to define the transition when the
size of the largest cluster, L, becomes equal to N .

We find two measures that clearly differentiate the global clustering of the final states
for T = 3 and T = 4. First, the final states have very different perimeters (see Fig. 6D).
Second, for T = 3, the clusters are very sparse, while for T = 4, the clusters are compact.
A natural way to quantify this is to use N0, whose statistics we present in Fig. 6C. The
measure N0 is a monotonically increasing function of v. Note, that even for a relatively
mild neighbor comfort threshold T = 4, almost 40% or more of the population have only
the like neighbors (for T = 3 this number is of order of 10%)! It means that many agents
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report living in a “dense” conditions (no vacancies in the neighborhood), while the vacant
spots create patches of their own.

One can see in Fig. 6D that the characteristic values of p are at most 2 for all the values
of v. It indicates that most of the agents have in their 8-point neighborhoods just 1 − 2
vacancies and no agents of a different kind. This conclusion is supported by the visual
inspection of Fig. 4F-H. Thus, for the low comfort threshold T = 4 there are almost no
contacts between the agents of a different kind.

In addition to the seclusiveness, N0, we quantify the differences in the final states for
neighbor comfort threshold T = 4 with vacancy ratio v ranging from v = 33% down
to v = 2%, with three measures: the number of clusters, NC , the scale of aggregation,
L, (Fig. 6). By providing opportunities for increasingly “easier satisfaction," one might
believe that decreasing v increases the values of number of clusters NC . In other words,
when there are a lot of vacancies, agents have many choices and it leads to appearance of
many small “islands". Our study confirms this, and the dependence is remarkably linear.
The value for the slope in Fig. 6B corresponding to T = 4 is 0.89 and the value 1 is well
within the error bars. Specifically, for typical final states with T = 4, v = 33% (Fig. 4H)
NC is relatively high; for T = 4, v = 15%, NC is smaller (Fig. 4D) and the clusters
on average are bigger; finally, states with T = 4, v = 2% contain only a few compact
clusters of either type that stretch across the whole lattice (L = 100). In general, as v
decreases, L increases almost linearly (see Fig. 6A).

Thus for T = 3 and T = 4, the increase in v leads to the opposite effects: they
increase and decrease the level of global aggregation, respectively.

4.2.3 T = 5: final states with many unhappy agents

For small vacancy ratio v, the dynamics with neighbor comfort threshold T = 5 always
results in a final state achieved after just a few switches, and consists of mostly unhappy
agents with no vacant space to where they could move. However, a slight modification of
the selection algorithm to allow direct R-B switches (similar to the selection algorithms
in (Pollicott and Weiss 2001; Weisbuch et al. 2002; Zhang 2004)), results in significant
global aggregation and drastically reduces the number of unhappy agents, although not
eliminating them entirely. The presence of unhappy agents in the final states is a new phe-
nomenon, which we do not observe in simulations for T = 3 (while such configurations
theoretically exist, they are extremely unlikely) and is much less pronounced for T = 4.

In Fig. 5 we present typical final states for neighbor comfort threshold T = 5 and
different values of vacancy ratio v with modified selection algorithm. A typical T = 5
final state consists of one big cluster for each kind of agent and the rest of the agents are
unhappy and scattered around. As the value of v decreases, the number of unhappy agents
in final states v decreases (Fig. 7A), and the size of a single (for each type) major cluster
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increases (see Fig. 7B). Another clear indication of the growth of the main cluster is the
increase of the number of agents with 8 similar neighbors, N0, illustrated in Fig. 6C.

The globally aggregated final states (small values of v) with T = 5 (with modified
selection) and T = 4 (with Schelling selection) appear similar in terms of the number of
large clusters and the scale of aggregation, L (Figs. 5A and 4A). However, there is a large
difference in their adjusted perimeter p: it is much smaller for neighbor comfort threshold
T = 5 (see Fig. 6D). There are two reasons for smaller p. First, the clusters are more
“circular”, thus reducing the perimeter-to-area ratio. Second, there are almost no vacant
spots inside the clusters for T = 5: almost all the vacant spots are located at the boundary
between the R and B clusters.

Figure 7: Statistics of the final states with
neighbor comfort threshold T = 5:
A: The average number of unhappy agents in final states;
B: The average number of the agents in the two big clusters.

The average number of unhappy agents in final states for different values of T and
v is presented in Fig. 7A. It is remarkable that the average number of unhappy agents
is almost a linear function of vacancy ratio v, between v = 10% (where they constitute
approximately 10%) and v = 30% (where they constitute approximately 33%; in other
words, almost every agent). While the existence of unhappy agents in the final state does
not significantly increase the perimeter p of the final states, it greatly inflates the total
number of clusters NC .

4.3 Number of steps in the evolution

To illustrate the dynamics of the evolution, we computed the average number of switches
required for the final state to be achieved for characteristic values of neighbor comfort
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threshold T and vacancy ratio v. For T = 3, v = 33%; T = 4, v = 33%; T = 4,
v = 2%; and T = 5, v = 2% the average number of steps are 3596, 5192, 5573, 4422,
respectively. The switches for T = 5, v = 2% that included both R and B agents are
counted twice. The most striking feature is that it takes significantly fewer switches to
achieve the final state for T = 5 than for T = 4. In Fig. 8 we present the distribution of
the number of jumps for different agents.

5. Final states with N = 50, N = 100 and N = 200

To illustrate the dependence of the final states of city size N , we performed 100 simula-
tions for N = 50, N = 100 and N = 200. In Figs. 9-11 we present characteristic final
states for N = 50, N = 100, and N = 200, respectively. One can see that the figures for
N = 50 and N = 200 are qualitatively very similar to Fig. 10.

In Fig. 12 we present characteristic plots of two of the aggregation measures (namely
the perimeter and the number of agents with only like neighbors) for city size N = 50,
N = 100, and N = 200. One can see that all three columns are very similar to each
other.

Figure 8: Statistics of the number of agent jumps.
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Figure 9: Characteristic final states for N = 50 and different values of
neighbor comfort threshold T and vacancy ratio v:
A: T = 3, v = 2%, B: T = 3, v = 15%, C: T = 3, v = 33%,
D: T = 4, v = 2%, E: T = 4, v = 15%, F: T = 4, v = 33%,
G: T = 5, v = 2%, H: T = 5, v = 15%, I: T = 5, v = 33%.

A B C

D E F

G H I
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Figure 10: Characteristic final states for N = 100 and different values of
neighbor comfort threshold T and vacancy ratio v:
A: T = 3, v = 2%, B: T = 3, v = 15%, C: T = 3, v = 33%,
D: T = 4, v = 2%, E: T = 4, v = 15%, F: T = 4, v = 33%,
G: T = 5, v = 2%, H: T = 5, v = 15%, I: T = 5, v = 33%.

A B C

D E F

G H I
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Figure 11: Characteristic final states for N = 200 and different values of
neighbor comfort threshold T and vacancy ratio v:
A: T = 3, v = 2%, B: T = 3, v = 15%, C: T = 3, v = 33%,
D: T = 4, v = 2%, E: T = 4, v = 15%, F: T = 4, v = 33%,
G: T = 5, v = 2%, H: T = 5, v = 15%, I: T = 5, v = 33%.
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D E F
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Figure 12: Characteristic values of the perimeter (top row) and the number
of agents with only like neighbors (bottom row) for N = 50 (left
column), N = 100 (middle column), and N = 200 (right col-
umn) different values of neighbor comfort threshold T and va-
cancy ratio v; in every frame, T = 3 (red triangles), T = 4 (green
squares), and T = 5 (blue circles).
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6. Concluding remarks and acknowledgements

In this paper, we quantify the dependence of city aggregation in the Schelling model
on city size, disparate neighbor comfort threshold, and population density. We make
two methodological innovations: we devise new measures to quantify the aggregation
in the Schelling model and we develop new fast algorithms to simulate a large city in
the model. We ran thousands of simulations for a large city, something which has never
been done before, and compiled accurate statistics of aggregation in a large city based
on these simulations. We find that the striking global aggregation Schelling observed
for disparate neighbor comfort threshold T = 3 for the 8 × 8 city is strictly a small
city phenomenon, and higher values of T are necessary for more pronounced aggregation
in large cities. We also find that aggregation in a large city is highly sensitive to the
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combination of the disparate neighbor comfort threshold and the number of vacancies in
a city, in particular that aggregation is an increasing function of vacancies when T = 3
but is inversely correlated with vacancies when T = 4. We also find a remarkable linear
dependence of aggregation measures on the vacancy ratio in large cities.

This work was partially supported by NSF (grants DMS-0355180 and 0400370).
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