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The role of state dependence
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Abstract

Random-effect models have been useful in demonstrating how unobserved factors are re-
lated to infant or child death clustering. Another potential hypothesis is state dependence
whereby the death of an older sibling affects the risk of death of a subsequent sibling.
Probit regression models incorporating state dependence and unobserved heterogeneity
are applied to the 1998 Demographic and Health Survey (DHS) data for Kenya. We find
that mortality risks of adjacent siblings are dependent: a child whose preceding sibling
died is 1.8 times more likely to die. After adjusting for unobserved heterogeneity, the
death of the previous child accounts for 40% of child death clustering. Further, elimi-
nating state dependence would reduce infant mortality among second- and higher-order
births by 12.5%.
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1. Introduction

Since Das Gupta (1990) suggested the concept of “death clustering”, demographers have
been preoccupied with understanding why deaths concentrate in certain families. Death
clustering has been understood as a phenomenon in which greater heterogeneity exists
in the distribution of child deaths than would be expected if deaths were distributed ran-
domly. Additionally, it has been viewed as what is left unexplained after the observed
correlates are controlled, and is thus attributed to unobserved or unobservable genetic,
behavioral and environmental factors related to mortality (Guo 1993; Ronsmans 1995;
Das Gupta 1997). It is also sometimes viewed as the correlation of survival outcomes
among siblings.

Studies of infant and child mortality in less developed countries mainly use maternal
retrospective birth histories data from DHS. The main approaches to examine death clus-
tering, therefore, essentially view it as a way of accounting for the correlation in mortality
risks among siblings (Zenger 1993). In the literature, the major approach to the study
of death clustering is to examine whether residual variation remains after accounting for
observed determinants of mortality by using random effects models (Sastry 1997; Sear
et al. 2002). The random effects parameter is used to measure the effect of unobserved
factors on the risk of death and to estimate the extent to which the risks of death in a group
are correlated. Unobserved heterogeneity, however, is not the only mechanism associated
with familial child death clustering.

Drawing on recent work in this area (Arulampalam & Bhalotra 2006), this study ex-
amines the causal process triggered by the death of an older sibling that in turn increases
the risk of death of the next child in the family. This is the well known process of state
dependence. The paper in particular attempts to clarify the concept of death clustering
and brings out the fact that it needs to be closely associated, and therefore examined, with
the sequence of births and deaths in a family. Earlier analyses have ignored this impor-
tant idea, either in the clarification of the concept or in the analytical approaches used
to examine the presence and extent of death clustering. As further elaborated below, the
sequences of births and deaths can be analyzed through models that also incorporate un-
observed heterogeneity. Using these models, we estimate one parameter to capture state
dependence and another to measure the variance associated with unobserved factors in
the risk of death. The analysis considers only infant deaths, that is, deaths that occurred
between birth and completed age of 11 months. The mother is considered as constituting
the family level in the subsequent analyses.

The ability to measure the clustering of mortality risks is much greater in settings
with high fertility and high mortality (Sastry 1997). Kenya offers an ideal setting for
such an analysis. In particular, its fertility and infant mortality profiles are appropriate for
studying death clustering with an infant mortality of 77 deaths per thousand births and
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total fertility rate of 4.9 in 2003 (Central Bureau of Statistics [CBS], Ministry of Health
(MOH), & ORC Macro 2004).

2. Infant death clustering: An overview

Studies that conceptualize the issue as an expression of unmeasured heterogeneity ex-
tend standard logistic regression techniques to allow for correlation by assuming that
the level of mortality risk varies among families and follows a probability distribution.
This assumption leads to the random intercept model which describes the probability of
death, conditional on the random intercept, as a nonlinear function of possible family- or
community-level explanatory variables. The underlying index, however, is linear in its
arguments. It is also possible to assume there are several levels in the data or that coef-
ficients of the explanatory variables are also random, thus producing a more complicated
correlation structure (Zenger 1993; Raudenbush & Bryk 2002). Because the random in-
tercept models assume an exchangeable correlation structure, all siblings are associated
equally. Zenger (1993) has demonstrated that death clustering may not be captured by
random effects models in part because of the restrictive assumptions of the model. In
particular, the number of children and the number of deaths in most families is relatively
small to yield significant variation. A second approach considers child death clustering as
a measure of excess observed versus expected deaths (Ronsmans 1995; Das Gupta 1997).
This approach uses count models to estimate the expected distribution of deaths from the
observed child deaths in families. Count models, however, assume that the probability
of a child death is the same for all families in a given group and do not permit one to
examine whether interfamily variation in mortality is related to the experience of close
siblings (Zaba & David 1996).

A third approach, and the one which is used in the present study, accounts for the
correlation of mortality risks by considering a woman’s births and deaths as a sequence
of events. This approach conditions the survival of younger children on the survival sta-
tus of elder children, that is, the lag effect (Zenger 1993; Curtis, Diamond & McDonald
1993; Curtis & Steele 1996; Omariba, Beaujot, & Rajulton 2007). Only one study, how-
ever, has estimated models that incorporate both the lag and unobserved heterogeneity
and interpreted the former in terms of a causal process (Arulampalam & Bhalotra 2006).
Borrowing from the economics literature on unemployment, the authors use the term
scarring to denote the effect of the death of an immediately previous child on the risk of
a younger one dying. The implication is that the death of a child “scars” the family and
makes the subsequent child more vulnerable. To our knowledge it is also the only study
that has explicitly addressed the ’initial conditions’ problem associated with models with
state dependence.

http://www.demographic-research.org 313



Omariba, Rajulton & Beaujot: Correlated mortality of siblings in Kenya

The concept of death clustering inherently implies the survival status of preceding
children, that is, the survival of a younger child in the family depends on whether an older
sibling has died. For instance, Zenger (1993) found that in Bangladesh familial associa-
tion in the risk of neonatal death was strongest for siblings of adjacent birth orders. The
effects of survival status of the previous child can be explained in three important ways.
First, a child’s death truncates the interval to the subsequent birth, which is in turn asso-
ciated with the maternal depletion syndrome that can lead to preterm and low birthweight
children and pregnancy complications. Second, parents may make a deliberate decision to
replace the dead child, the so-called replacement hypothesis (e.g., LeGrand et al. 2003).
Third, an obvious but a largely missing hypothesis in demographic literature is mater-
nal depression. Depression is associated with negative pregnancy outcomes including
preterm delivery, low birthweight and small-for-gestational-age babies all of which are
significant risk factors for child death (Steer et al. 1992). Because maternal depression
seems independent of birth interval, it is possible to isolate it from the other two mech-
anisms. Although it is difficult to precisely determine what mechanism is operating in a
given situation, the exercise is important for selecting between policy options. On the one
hand, if its effect reflects the birth spacing mechanism, improving availability and use of
contraception would reduce death clustering, a straightforward policy response. On the
other hand, policy options responding to depression and replacement mechanisms are less
certain.

Thus, the concept of death clustering implies examining the survival status of an in-
dex child as dependent on the survival status of previous children. If the survival status
of an index child is dependent on the survival status of the immediately previous child
only, it is said to be of the first-order Markov effect. Studies examining both unobserved
heterogeneity and state dependence, for example, in econometric studies of unemploy-
ment (Heckman 1981; Wooldridge 2005; Stewart 2007) or even in demographic studies
of death clustering (Arulampalam & Bhalotra 2006; Bhalotra & van Soest 2007) generally
consider the first-order Markov effect. The concept of death clustering, however, involves
more than that. In general, one can ask how many deaths should take place in a family to
say for certain that there is “death clustering” in the family. If only one infant dies, we
may not attribute clustering effect to that context. Should there be two or three or four or
how many infants should die then? Is there a threshold point that we can use to clarify the
concept of interest? This specific point has not been addressed in previous research as far
as we know. There is therefore a need to explicitly address the question by examining it
through a higher-order Markov effect in the model. We shall return to this point later in
the section on model building.

If there is death clustering, how can we possibly explain its presence in certain families
and not in other families? Previous studies have tried to explain death clustering through
a number of risk factors including parity, socioeconomic status, cultural factors, and child
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characteristics (Zaba & David 1996; Das Gupta 1997). Das Gupta (1997) found that in
India the variation between the observed and expected child deaths in the lower economic-
status groups was greater than in the higher economic-status groups. Similarly, significant
clustering was found among uneducated women than among educated women. The study
suggested that unobserved factors associated with death clustering are more positively
associated with socioeconomic conditions and education level. Certain households may
suffer from unusual adverse conditions such as insufficient economic resources, health
conditions, or access to medical care. Siblings share the same household environmental
conditions and hence, any risks associated with these conditions such as lack of sanitation
and unsafe water supply, affect all of them. Also, risks associated with family behavior
and child care practices including infant feeding, use of health facilities, and general
standards of hygiene are likely shared by all siblings (Curtis et al. 1993; Pebley, Goldman
& Rodriguez 1996). Cultural practices in certain population sub-groups could also lead to
a concentration of deaths in those sub-groups. For instance, in highly male-oriented and
patriarchal societies, death clustering could be due to an attempt to remove girls through
differential childcare (Das Gupta 1997).

Death clustering is also likely to be more pronounced among women with higher par-
ities (Zaba & David 1996). Besides shared genetic characteristics that could be operating
in such situations, children in big families may face competition for resources and be
more likely to suffer infectious diseases because of crowding in the household (e.g., Grib-
ble 1993). As family size increases, not only are family resources stretched increasing the
risk of malnutrition, but overcrowding makes contagious disease to spread faster (Aaby
1992). Illnesses are also more likely to be fatal in the presence of malnutrition.

Death clustering has also been attributed to lack of ’maternal competence’ in child-
care. For instance, Das Gupta (1990) concluded from participant observation that women
who experienced multiple child deaths were often less resourceful and less organized in
caring for their surviving children and in running the household even when compared
with women in households with similar socioeconomic status. In relation to child care,
such women were poor at making effective home diagnoses of their children’s symptoms
and taking active steps to help them. Because a large majority of child illnesses are han-
dled within the home, less resourceful mothers are disadvantaged. However, there is a
practical problem in measuring a mother’s resourcefulness because in any community,
the proportion of mothers who are less resourceful and unskilled in childrearing is likely
to be small. The distribution of deaths would therefore not be random because only few
families contribute to the total deaths that occur in the community.

The concentration of deaths in certain families can also be attributed to biological
factors such as genetically determined frailty. Previous research suggests that their role,
however, is limited (Guo 1993; Sastry 1997). This is because genetic factors unfavorable
to child survival are kept low by natural selection, which ensures that people who die
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young do not pass on their unfavorable genes. Genetic factors and other familial effects,
however, are not measured in social surveys. It is difficult therefore to uniquely identify
which of the factors are responsible for death clustering. Other important biological fac-
tors include the tendency of certain mothers to have babies of low birthweight, or to suffer
difficult deliveries, or lactational failure (Knodel & Hermalin 1984).

3. Analytic model

There are two main issues associated with modeling siblings’ survival outcomes. First,
the selected approach should be able to handle state dependence because the survival sta-
tus of an older child could impact that of the younger one. Second, there is the need to
model unobserved heterogeneity as well because of between family variation in childcare
practices, access to healthcare, and other unobserved characteristics. Consequently, bi-
nary probit models incorporating an unobserved heterogeneity term and a lag effect to
capture state dependence are used to examine infant mortality. The inclusion of a lag pa-
rameter implies that the data are ordered sequentially and therefore the model is dynamic
because sequencing incorporates a time dimension.

The main interest of the model is to establish whether the death of an older sibling
(j − 1) in family i has an influence on the survival status of the next child (j = index
child)1. Let y∗ij be the latent propensity for the occurrence of infant death. The latent
equation for the random effects dynamic probit model is specified as

y∗i,j = x′ijβ + γyij−1 + αi + uij (1)

(i = 1, 2, ..., N ; j = 1, 2, ..., ni) where x denotes a vector of observable child- and
family-level characteristics, β is a vector of parameter estimates associated with x, γ is
the lag parameter capturing the influence of the death of the previous child on that of the
next one, and αi are unobserved family specific random effects, and uij N(0, σ2

u). The
standard random effects model assumes αi is uncorrelated with the included covariates
xij

2. The binary outcome variable (in this case, infant death) is given by:

1Demographic and health surveys use a multi-stage cluster sampling approach. The sampling clusters therefore
represent another hierarchy in the data that needs to be adjusted for. These clusters, however, are created for
sampling and survey administration purposes and may have no substantive meaning in relation the research
issue (see Montgomery & Hewett 2005). For this reason and the fact that it is difficult to interpret the cluster
effect on the survival experience of children born at different times and the limitations of the program redprob
used here (see below) it is not incorporated in the models.

2But this assumption can be relaxed by assuming a relationship between and the family-specific means of x-
variables or a combination of their lags and leads, following the Mundlak-Chamberlain approach (Mundlak
1978; Chamberlain 1984). Using this approach, Stewart’s (2006, 2007) Stata program redprob can include
these additional variables. This specification, however, is not assumed in the present study.
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yij =
{

1 if y∗ij ≥ 0
0 otherwise

(2)

Usually N is large, but ni is typically small (here denoting the number of children in a
family). If αi = 0, it means that unobserved family-level factors have no effect on the
probability of child death. Similarly, if γ = 0, it implies that the probability of the index
child dying is independent of an older child’s death. Its estimate is an average over the
number of children and the time period considered. The standard random effects model
also assumes αi is uncorrelated with xij . The composite error term vij = αi + uij will
be usually correlated due to family-specific αi, and the model assumes equi-correlation
between the vij for any two children, which is given by

λ = Corr(vij , vik) =
σ2

α

σ2
α + σ2

u

, j, k = 1, 2, ..., ni, j 6= k (3)

With these specifications, the probability of death for an infant j of mother i, given αi, is
given by

P[yij | xij , yij−1, αi] = Φ[(x′ijβ + γyij−1 + αi)(2yij − 1)] (4)

where Φ denotes the cumulative distribution function of the normal distribution. And,
dropping x for convenience the observed sequence of binary outcomes is given by:

P(yin, ..., yi2, yi1 | αi) = P(yin | yin−1, αi)... P(yi2 | yi1, αi) P(yi1 | αi) (5)

Equations (1) and (5) make it clear that this is a transition model based on the Markov
assumption that the probability of infant death depends on the survival status of an im-
mediately previous child. The number of previous births and deaths determining the
transition probability is called the order of the Markov chain model. The model above is
a first-order Markov model and assumes that conditional on yij , xij and αi, the deaths of
older siblings other than the immediately preceding child has no effect on yij .

With the data arranged in a sequence, it is possible that the death of a younger sibling
occurred before that of the older one. This is more likely to happen for child than infant
mortality because of the longer period of observation. If the death of a younger child
preceded that of an older child, then the Markovian assumption will be violated. Our
data, however, does not have any such observations.

The inclusion of the lagged term, yij−1 in equations (1) and (4), however, introduces
a bias because it is undefined for all firstborns (Hsiao 2003). In particular, as equation
(5) shows, the model requires a specification for P(yi1 | αi). Some studies therefore
drop all firstborns in each family. Others left-truncate the data by selecting only children
born within a given period before the date of the survey not only to reduce recall-bias but
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also to ensure the event of interest corresponds closely to the observed characteristics and
conditions at survey date. As a consequence, the start of the sample is not the same as
the start of the stochastic process that is being examined. Because αi is family-specific, it
will appear both in the equation for yij and yij−1. The initial condition, yij , is therefore
correlated with αi and γ would be overestimated (Fatouhi 2005). The estimation of the
model therefore requires an assumption regarding yi1 and its relationship with αi. An
assumption leading to the simplest form of model for estimation would be to consider
the initial condition to be exogenous. Such an assumption can be made if the start of
the process coincided with the start of the observation period for each respondent. This
assumption is reasonable in the case of employment data where everyone starts without
employment. In the current case, however, endogeneity of the survival status of the first-
born is an issue because maternal frailty affects the health of both the first and subsequent
children. Hsiao (2003) suggested that the initial conditions problem can be avoided if the
“number of time points” of the panel are large. This situation is also not satisfied in our
sample because, as noted earlier, ni here denoting the number of a woman’s children is
always finite. See Heckman (1981), Wooldridge (2005), Hsiao (2003), and Arulampalam
& Bhalotra (2006) for more details on the initial conditions problem.

In most situations, the initial conditions would be correlated with the αi, and therefore
the estimator will be inconsistent and will overestimate γ, thus overstating the importance
of state dependence. To correct for this bias, the approach proposed by Heckman (1981)
involves specifying a linearized reduced form equation for the initial condition yi1 (here,
the first child in each family):

y∗i1 = z′i1π + θαi + ui1 (6)

where zi1 is a vector of exogenous variables (for example, pre-sample characteristics of
respondents) which can include time invariant components of xij and θαi(with θ > 0) is
correlated with αi, but uncorrelated with uij for j ≤ 2. Equation (6) ensures that the risk
of death of the firstborns of each family is also included in the model, and both equations
(1) and (6) jointly specify a complete model for infant mortality. This model would give
consistent estimates of the effect of the survival status of the immediate preceding sibling
on the death of an index child.

The Heckman approach gives the joint probability of the observed binary sequence
for family i, given αi, as

P(yi1, yi2, ..., yini |xi, zi1, αi) = Φ {(zi1π + θαi)(2yi1 − 1)} ·

·
ni∏

j=2

Φ
{
(x′ijβ + γyij−1 + αi)(2yij − 1)

}
(7)
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Given that the outcome variable is binary, a normalization is required to identify the pa-
rameters. By convention, this is set as σ2

u = 1. Under this normalization, σ2
α = λ(1− λ)

- see Equation (3). Therefore, the individual likelihood function for family i becomes:

∏

i

∫

α∗

[
Φ

{
(z′i1π + θσαα∗) + (2yi1 − 1)

}·

·
ni∏

j=2

Φ
{
(x′ijβ + γyij−1 + σαα∗)(2yij − 1)

}
dF (α∗)

]
(8)

where F is the distribution function of α∗ = α
σα

The joint random-effects dynamic probit model taking account of initial conditions is
non-standard and therefore cannot be estimated using the routines available in standard
statistical software. Stewart (2006, 2007) has written an ado (automatic do) file for Stata,
called redprob.ado, for fitting the random effects dynamic probit model. This program
uses the maximization procedures in Stata and the Gaussian quadrature to approximate
the integral in the individual likelihood function Li (Equation (8)) (StataCorp 2006). The
results from the random effects dynamic probit model presented below are based on spec-
ifying 24 quadrature points in the procedure.3

4. Data

The 1998 Kenya DHS used in this study was the third in the series of similar surveys un-
dertaken in the country. The survey was based on individual interviews of women in the
reproductive ages, 15-49 years and their partners in the sampled households. The survey
successfully interviewed 7,881 of 8,233 eligible women from 8,380 sampled households.
Of the 7,881 women who were successfully interviewed, 5,717 had given birth to at least
one child yielding a total of 23,351 children. The analysis, however, excluded 62 children
who were born on the month of interview because their mortality experience is unknown.
Further, we dropped each second firstborn twin (57 children) so that each family has
one first observation. The analysis is based on 23,232 children (n) from 5,695 families
(N ). A detailed description of the survey including sampling procedure, data quality, and
descriptive information on infant and child mortality, fertility, family planning and house-

3Another ado file for Stata, called relogm1.ado, written by Arulampalam and Bhalotra (2006) can also be used to
estimate a model accounting for the initial conditions. This program estimates a random effects dynamic logistic
model, whereas the redprob.ado estimates a probit model, depending on the assumption whether the underlying
distribution follows a logistic or a normal distribution respectively. We tried with both programs, but prefer the
probit specification because redprob.ado and its help facilities are accessible through Stata. The results based
on the logistic model are available on request from the first author.
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hold information among others is available in the survey report (National Council for
Population and Development, Central Bureau of Statistics & Macro International 1999).

4.1 Clustering of children and infant deaths by family

Table 1: Distribution of children and infant deaths in Kenya, DHS1998

Infant deaths in the family Percent of
Total total total

Children in family 0 1 2 3 4 5 families children of deaths
1 1,038 62 0 0 0 0 1100 4.7 3.9
2 897 80 4 0 0 0 981 8.4 5.5
3 666 105 9 0 0 0 780 10.1 7.7
4 575 97 18 3 1 0 694 11.9 9.1
5 406 92 21 8 1 0 528 11.4 10.1
6 372 105 27 6 3 1 514 13.3 12.1
7 232 90 17 16 1 0 356 10.7 11.0
8 157 72 25 12 5 2 273 9.4 11.7
9 131 57 20 9 2 3 222 8.6 9.2
10-15 92 68 42 22 17 6 247 11.4 19.9
Total families 4,566 828 183 76 30 12 5,695 100 100
Percent total children 70.5 19.2 5.7 2.7 1.2 0.5 100
Percent of total deaths 0 51.6 22.8 14.2 7.5 3.9 100

The descriptive results in Table 1 serve as a basis for determining whether there is
need to control for familial correlation of mortality risks. The table is interpreted in
two complementary ways: the percentage of children who belong to families with a given
number of children and the percentage of deaths occurring to families with a given number
of infant deaths. Only 5 percent of the total 23,232 children come from families with one
child and about 87 percent of the children belong to families with three or more children.
Of the families with 10-15 children, 139 families had 10, 54 families had 11, 37 had 12,
12 had 13, 3 had 14, and 2 had 15 children each for a total of 2,656 children. Only 37.6
percent of the families have five or more children, and yet these children make up about
two-thirds of total children.

A total of 1,605 infant deaths in the sample occurred to 1,129 families; and, 4,566
(80.2%) families had never experienced an infant death. Further, the observed proportions
in the Kenyan data show that 1.2% of the families had lost all their children in infancy.
Two families one with 6 and the other with 7 child deaths were grouped under families
with 5 child deaths. About 25 percent of the deaths occurred to 2.1 percent of the families
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with three or more child deaths. Slightly less than 1 percent of the families contribute four
or more deaths; together they account for about 11 percent of all deaths. These results
therefore indicate that there is substantial clustering of child deaths in certain families as
a majority of families did not experience any death.

A cross-classification of infant deaths (yij) by survival status of immediately previous
child (yij−1) in Table 2 corroborates this point. About twenty two percent of the dead
index children are preceded by siblings who also died in infancy (row percentage). The
observed conditional probabilities p1 and p0 of an infant death given that his/her imme-
diately previous sibling died or survived respectively can be obtained from Table 2 (see
column percentages):

p1 = P(yij = 1 | yij−1 = 1) = 0.179 and p0 = P(yij = 1 | yij−1 = 0) = 0.059

This suggests that the probability of infant death in Kenya is higher by 0.12 (0.179-0.059)
if the preceding sibling died in infancy. The result can also be interpreted as a ratio, that
is, a child is 3.03 (0.179/0.059) times more likely to die in infancy if its preceding sibling
died.

Table 2: Distribution of children by survival status of index and
previous child

Survival status of previous child
Alive Dead Total n

Survival status of index child Row Percentages
Alive 92.7 7.3 16,334
Dead 78.3 21.7 1,203

Column Percentages
Alive 94.1 82.1
Dead 5.9 17.9
Total n 16,082 1,455

4.2 Description of variables

The binary outcome variable indicates whether a child died between birth and its first
birthday, taking the value 1 if it died and 0 otherwise. The DHS collects information from
mothers about all their biological children including dates of birth and current age if the
child is alive, and its age at death if it died. This information was used to determine the
survival status of children between birth and age 11 months.
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The main independent variable in this study is the survival status of the immediate
preceding sibling (yij−1). Just as in the outcome measure it takes the value 1 if the
immediate preceding sibling died in infancy and 0 otherwise. Where the index child was
a twin or triplet, care was taken to ensure that the survival status of the preceding child is
the same for all of them. Similarly, when the previous birth was a multiple birth, yij−1

takes the value 1 if any of the children of a multiple birth died in infancy and 0 otherwise.
The death of only one of the children of a multiple birth is not likely to lead to the cessation
of breastfeeding and hence a shortened succeeding birth interval. Nonetheless, maternal
health status may be compromised through its depressive effects.

We control for five child-level variables: sex, whether the child is of a multiple birth,
birth order, maternal age at child’s birth, and birth interval. Birth order affects infant death
through primaparity, depletion of maternal physiological system from repeated pregnan-
cies and siblings’ competition for household resources. The effects of maternal age at the
birth of the child could also include primaparity and maternal physiological state (Miller
1993; Alam 2000). The preceding birth interval, however, needs special consideration be-
cause of its close association with the preceding child’s survival status. Having these two
variables in a model is synonymous with including both the ultimate and the proximate
cause (Arulampalam & Bhalotra 2006). The death of a previous child has its impact on
the index child’s risk of dying mainly through a shortened birth interval. Further, birth
interval is potentially a choice variable if use of contraception is involved. Short birth
intervals also imply that most births are concentrated within a certain age range of the
mother, creating a compound effect of both age and spacing. It seems therefore reason-
able not to include the preceding birth interval. We, however, include the birth interval
in the model to assess the extent of the impact of the preceding child’s survival status on
the death of the index child after controlling for birth interval. If the effect of the preced-
ing child survival status remains strong with birth intervals controlled for, it will suggest
the presence of other unexplored mechanisms such as depression. This can be checked
by comparing two models, one with and the other without the birth interval. Following
extant research children are grouped into either of these categories: born less than 19,
19-35, or 36 or more months after the preceding sibling (e.g., Zenger 1993).

The analysis also includes familial factors known to have an impact on infant mor-
tality. Many of these factors change over the course of a woman’s childrearing history,
but they are usually measured only at the time of the survey. Many demographic studies
assume that they reflect largely the conditions extant at the death of the child. Whereas
such an assumption may be true for education because schooling is unlikely to resume
after childbearing commences, the other factors usually assessed in the study of infant
mortality such as migration, place of residence, marital status, and household socioeco-
nomic status and living conditions do not necessarily remain unchanged. We therefore
exclude those variables that are potentially time inconsistent and use only five family-
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level variables namely, maternal and paternal education, religion, ethnicity, and mother’s
birth cohort.

Maternal education is a proxy for a host of unmeasured factors such as mother’s child-
care skills, domestic management of child illness, household power dynamics and effec-
tive use of modern health services. Paternal education is considered mainly as an indicator
of household socioeconomic status (e.g., Caldwell 1994; Desai & Alva 1998). Both eth-
nicity and religion are included to capture socio-cultural influences on infant mortality.
Ethnicity indicates cultural childcare practices including feeding, breastfeeding, and use
of health services, which are not directly measured or are not measured for all children.
Religion measures beliefs, norms and value orientations including attitudes toward child
illness and appropriate responses (e.g., Gregson et al. 1999). The birth cohort of the
mother can capture changes in mortality risks across time because our data includes chil-
dren born during different time periods. The description of these variables is presented in
Table 3.

5. Results

Four probit models that incorporate state dependence and unobserved heterogeneity are
estimated. The first includes only state dependence; the second adds child-level factors,
whereas the third includes family-level factors. Model 4 which includes a control for birth
interval tests for its impact on the relationship between the death of the preceding child
and infant death. The covariates in the equation for the firstborns include family-level
characteristics as well as the sex of the index child.

For each estimated model, the redprob.ado program produces three sets of parameters:
the first is for the pooled probit model for j > 1 only (that is, for all subsequent children).
The pooled probit model ignores the correlation among children within families. The
second set of parameters is for j = 1 only, that is, a model of initial conditions. And, the
third is for the full probit model that combines both. The results from the random effects
probit model are presented in Table 4. The results from the pooled probit model are not
reported, but are available on request from the first author. The results from the random
effects probit model cannot be directly compared with the results from the pooled probit
model because they use different normalizations: While the former uses a normalization
of σ2

u = 1, the pooled probit model uses σ2
v = 1. For comparisons, the random effects

probit model estimates should be rescaled by an estimate of σu/σv =
√

1− λ (Stewart
2007).
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Table 3: Descriptive statistics of child- and family-level predictors of infant
mortality in Kenya, DHS 1998

Variables # children/ women Percentage
Child level (n) 23,232
Dead infants 1,605 6.9
Preceding child dead in infancy 1,455 8.3(excluding firstborns)
Multiple births 613 2.6
Females 11,710 49.6
Birth order
Firstborns 5,695 24.5
2-3 born 8,171 35.2
4-5 born 4,991 21.5
6-7 born 2,720 11.7
8+ born 1,655 7.1
Maternal age at childs birth
< 20 5,715 24.6
20-24 7,656 33.0
25-29 5,369 23.1
30-34 2,996 12.9
≥ 35 1,496 6.4
Preceding birth interval (excluding firstborns)
<19 months 2,926 16.7
19-35 months 9,414 53.7
≥ 36 months 5,197 29.6

The results of Model 1 with state dependence only (the parameter γ) show that the
death of an immediate older sibling has a positive and highly significant effect on the
conditional probability of infant death. The partial effect of yij−1 on P(yij = 1) can be
found from the estimates of counterfactual outcome probabilities, taking yij−1 as fixed at
0 and 1 and evaluated at xij = x . The resulting probabilities (p0 and p1 from the model)
can be interpreted as average partial effects (APE) by taking the difference between them
or as predicted probability ratios (PPR) by taking the ratio of the two values (Stewart
2007: 522). The conditional probabilities estimated by the model are given as p1 = 0.108
and p0 = 0.060. Thus, APE = .048 and PPR = 1.8. A child whose preceding sibling
died is therefore 1.8 times more likely to die than if its elder sibling was alive.
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Table 3: (Continued)

Variables # children/ women Percentage
Family level (N) 5,695
Maternal birth cohort
1970-1983 2,184 38.3
1960-1969 2,050 36.0
1949-1959 1,461 25.7
Maternal education level
None 917 16.1
Primary 3,358 59.0
Secondary or higher 1,420 24.9
Paternal education level
None 1,125 19.8
Primary 2,528 44.4
Secondary or higher 2,042 35.9
Religion
Protestant 3,597 63.2
Catholic 1,536 27.0
Other 562 9.9
Ethnicity
Kikuyu/Meru 1,284 22.5
Kamba 603 10.6
Kalenjin 1,021 17.9
Kisii 419 7.4
Luhya 814 14.3
Luo 731 12.8
Mijikenda/Others 823 14.5
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Table 4: Results from random effects probit models for infant mortality in
Kenya, DHS 1998

Variables Model 1 Model 2 Model 3 Model 4
γ 0.355(0.054) 0.374(0.055) 0.329(0.055) 0.266(0.056)
Multiple births 1.010(0.070) 1.010(0.070) 1.020(0.070)
Females -0.096(0.033) -0.109(0.033) -0.106(0.033)
Birth order
4-5 born 0.177(0.044) 0.121(0.046) 0.084(0.046)
6-7 born 0.231(0.062) 0.115(0.063) 0.042(0.064)
8+ born 0.395(0.080) 0.222(0.082) 0.120(0.083)
Maternal age at childs birth
< 20 0.238(0.053) 0.184(0.053) 0.135(0.054)
25-29 -0.161(0.047) -0.097(0.048) -0.040(0.049)
30-34 -0.144(0.062) -0.045(0.063) 0.063(0.065)
≥35 -0.169(0.083) -0.060(0.085) 0.098(0.088)
Maternal birth cohort
1960-1969 -0.058(0.057) -0.081(0.057)
1949-1959 -0.067(0.059) -0.107(0.060)
Maternal education level
Primary -0.050(0.047) -0.044(0.047)
Secondary or higher -0.170(0.071) -0.185(0.072)
Paternal education level
Primary -0.060(0.051) -0.065(0.051)
Secondary or higher -0.175(0.062) -0.188(0.062)
Religion
Catholic 0.062(0.042) 0.063(0.042)
Other 0.143(0.075) 0.147(0.076)
Ethnicity
Kamba 0.271(0.077) 0.281(0.078)
Kalenjin 0.150(0.067) 0.144(0.067)
Kisii 0.067(0.090) 0.069(0.091)
Luhya 0.386(0.068) 0.377(0.068)
Luo 0.797(0.066) 0.813(0.067)
Mijikenda/Other 0.176(0.080) 0.179(0.080)
Preceding birth interval
< 19 months 0.236(0.042)
≥ 36 months -0.193(0.042)
Constant -1.719(0.028) -1.790(0.042) -1.880(0.095) -1.850(0.097)
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Table 4: (Continued)

Variables Model 1 Model 2 Model 3 Model 4
a(Females) -0.131(0.052) -0.129(0.053) -0.129(0.053)
Maternal birth cohort
a(1960-1969) -0.077(0.064) -0.077(0.064)
a(1949-1959) 0.017(0.070) 0.017(0.069)
Maternal education level
a(Primary) -0.140(0.076) -0.140(0.076)
a(Secondary or higher) -0.359(0.100) -0.359(0.100)
Paternal education level
a(Primary) -0.068(0.070) -0.069(0.069)
a(Secondary or higher) -0.199(0.080) -0.199(0.080)
Religion
a(Catholic) -0.008(0.062) -0.008(0.062)
a(Other) 0.163(0.107) 0.163(0.107)
Ethnicity
a(Kamba) 0.455(0.104) 0.456(0.104)
a(Kalenjin) 0.246(0.096) 0.246(0.096)
a(Kisii) 0.010(0.141) 0.010(0.141)
a(Luhya) 0.413(0.098) 0.413(0.098)
a(Luo) 0.858(0.092) 0.859(0.092)
a(Mijikenda/Other) 0.244(0.115) 0.244(0.115)
a(Constant) -1.557(0.043) -1.469(0.045) -1.526(0.120) -1.527(0.120)
λ 0.181(0.023) 0.168(0.024) 0.139(0.023) 0.139(0.023)
θ 0.734(0.167) 0.640(0.172) 0.431(0.200) 0.444(0.201)
Log-likelihood -5675.2 -5534.2 -5335.7 -5301.0
p̂0 0.060 0.061 0.055 0.052
p̂1 0.108 0.114 0.097 0.084
APE: p̂1 − p̂0 0.049 0.053 0.043 0.032
PPR: p̂1/p̂0 1.812 1.869 1.783 1.614

Notes: Standard errors in parentheses.
The variables’ reference categories are: Singleton birth, Male child, 2-3 born (Birth order), 20-24 (Maternal age at child’s
birth), 1970-1983 (Mother’s birth cohort), None (Maternal and paternal education), Kikuyu/Meru (Ethnicity), and Protestant
(Religion).
p̂0, p̂1 = predicted probability of infant death given the survival and death of the preceding child respectively, with all
covariates set to their means.
a(x) correspond to the parameters for j = 1.
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A second way of interpreting the above measures is to use the ratio of the difference
measures between p1 and p0 obtained from the model estimates and from the raw data;
that is, ratio of model APE to observed APE. This ratio indicates the amount of “raw
persistence” or clustering explained by the model. The results in Table 2 and what we
found from the raw data (see Section 4.1) suggest that the death of the previous child
accounts for 40% [(0.108 - 0.060)/(0.179 - 0.059)] of clustering in Kenya after adjusting
for unobserved heterogeneity.

The parameter γ shows the lagged effects of the immediate older sibling’s death on
the conditional probability of the index child’s death. Another way of interpreting this
effect would be to compare the average model estimate of probability of death in a sample
without firstborns with the average predicted probability of death when γ = 0. This gives
an estimate of the reduction in mortality that would be realized if the effect of previous
child’s death were eliminated (Arulampalam & Bhalotra 2006). The estimated probability
of death when firstborns are excluded is 0.0686 (results not shown), whereas the predicted
probability of death when γ = 0 is 0.060 (Model 1). This suggests that mortality among
second- and higher-order births would fall by 12.5% [= 1 - (0.060/0.0686)] were the
effects of previous child’s death eliminated in Kenya.

Examining the changes in γ, p0 and p1 between models provides a sense of the per-
sistent influence of these parameters in the presence of different sets of explanatory vari-
ables. As seen in Table 4, there is a slight increase in the magnitude of γ in Model 2
which incorporates only child-level explanatory variables, but it declines to 0.266 in the
full model (Model 4). The estimated conditional probabilities of death given the survival
status of the previous child are 0.114 for p1 and 0.061 for p0 in Model 2, giving a PPR
value of 1.87. Again, this value goes down to 1.61 in the full model. Thus, the significant
effect of previous sibling’s death continues to hold even in the presence of individual and
family-level variables including the preceding birth interval.

The coefficients of the explanatory variables shown in Table 4 are consistent with
theoretical expectations and previous research. In Model 2, all the child-level variables
have a significant effect on the probability of infant death. Children of a multiple birth,
those of the fourth- and higher-order births and children born at young maternal ages
(< 20) have a higher probability of dying. On the other hand, female children and those
born after age 25 are less likely to die.

Among family-level factors, only maternal and paternal education and ethnicity have
a significant effect on the probability of infant death. The result on education shows that
children of parents with secondary or higher education are less likely to die in infancy.
Although parental primary education has a negative effect on infant death, it is not sta-
tistically significant. Compared to Kikuyu children who make up the reference group,
children from other ethnic groups are more likely to die, with those of the Luo and Luhya
being the most disadvantaged. Although the magnitudes of effects of child-level variables
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get reduced when the familial variables are introduced (compare Models 2 and 3), they
still remain significant.

The parameter λ denoting the within-family correlation of the composite errors in
Model 1 is estimated as 0.18. This suggests that 18% of variation in the probability of
infant death results from family-level factors shared by children. Although λ reduces to
0.17 and 0.14 in Models 2 and 3, it remains significant. As expected, familial factors have
a larger impact in reducing the effect of unobserved factors. Further, in the pooled probit
model which ignores familial correlation, we find that the effect of previous child’s death
is overestimated: the γ parameter estimated by the pooled probit model is as high as .65
for Model 1, almost twice higher than the estimate given by the random effects model.
As mentioned earlier, a correct comparison of these two estimates should use a rescaled
estimate of the lag. For example, this rescaled estimate of γ for Model 3 is 0.305 [that is,
0.329

√
(1− 0.139)]. Overall the lag estimate is higher in the pooled probit model than

in the random effects probit model by 42% to 51%. The results therefore provide a strong
justification for modeling unobserved intra-family heterogeneity.

An important hypothesis in the models presented here is that of the endogeneity of the
initial conditions (firstborns in each family). If the null hypothesis θ = 0 in equation (4)
cannot be rejected, then it would imply that the unobserved heterogeneity for the firstborns
and higher-order births are not correlated. Further, as in extant research, the first obser-
vation can be treated as exogenous. The hypothesis θ = 0, however, is rejected across
all the models. The results therefore demonstrate the necessity of specifying a linearized
reduced equation for firstborns which is estimated jointly with the structural equation for
second- and higher-order births. In fact, the effects of the explanatory variables in the lin-
earized reduced equation for the firstborns are similar to those in the structural equation
for j > 1 (compare the coefficients for x and a(x) variables in Model 3).

As was discussed in section 4.2, we included a model with birth interval to examine
potential mechanisms associated with the death of the previous child. The results from
Model 4, which includes the birth interval variable, indicate that a short preceding birth
interval (< 19 months) has a positive effect, whereas a longer birth interval (> 36 months)
has a negative effect, on infant mortality. More importantly, including the birth interval
reduces the magnitude of the γ parameter - by 29% from Model 2 and by 19% from
Model 3. Yet, the γ parameter has a significant effect in the presence of the birth interval
variable.

6. Discussion and conclusion

In the current literature, residual variation in multilevel models is interpreted as shared
familial unobserved or unobservable characteristics indicating the presence of death clus-
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tering. In contrast, this paper explicitly considered state dependence, a causal process in
which the death of an immediately previous child increases the risk of death of the next
child in the family, as an alternative explanation for infant death clustering in addition to
unobserved heterogeneity. Conditioning the survival of younger siblings on that of the
older ones reflects the fact that risk factors for siblings close in age are more alike than
for those farther apart. This differs with pure random effects models in which it is as-
sumed that the risks for children in the same family are equally correlated and remain
constant across time. Because familial and maternal characteristics, however, are bound
to change over a woman’s childbearing and childrearing history this assumption may not
hold (Zenger 1993). Focusing on state dependence is also important because a correla-
tion in the risk of death between immediate pairs of siblings generates a sort of inertia in
the mortality process, which in turn exerts a drag on the rate of decline of mortality in a
country (Arulampalam & Bhalotra 2006).

The results of this analysis clearly show that both unobserved heterogeneity and state
dependence are important in the study of death clustering. More importantly, unlike un-
observed heterogeneity, state dependence is a causal process, and therefore it offers a
potential for policy interventions. The results also suggest that where death clustering
exists, it is not sufficient for policy interventions to target families simply on the basis
of infant deaths in general. As our discussion in section 2 and the results presented in
Tables 1, 2, and 4 clearly show, policy interventions should first identify those families
that experience many infant deaths and then examine the mechanisms that bring about
high fertility as well as an unusual number of unnecessary deaths of children in those
families. Further, although the death of an older child can operate through birth spacing,
there could be other unidentified mechanisms that might be more important. For example,
although encouraging the use of contraception would help in lengthening interbirth inter-
vals, it is only a partial, and perhaps for certain families an incorrect, solution. Even if
birth intervals accounted for all of its effect, it is possible that parents deliberately replace
a dead child and therefore the use of contraception may not be the right response. It is
also possible that the effect of the death of a previous child operates through maternal
depression, a much more difficult mechanism to determine. Obviously, this is an area that
will benefit much from field research.

Although this study has shown that state dependence is an important mechanism in
death clustering, the model used here is a first-order Markov model. A further area of
research would involve estimating a second- or third-order Markov model. Although in
principle one can estimate as many orders as the pairs of siblings in the data, higher-order
lags are based on fewer children and the models would also be difficult to identify. In
general, since the mechanisms through which the survival status of the previous child
affects the survival of other children are stronger for children who immediately follow
each other, the lag effect is likely to diminish the farther back we move from a particular
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index child (Zenger 1993). For example, the effect of death of the firstborn on the death
of the fourth-born could be much smaller than its effect on the second-born. Indeed, an
exploratory analysis with a second- and third-order Markov model confirmed this for the
Kenyan data (results not shown). The higher-order models also have an attractive feature
of their own, namely the initial conditions problem is no longer an issue, and therefore
the models can be estimated using the standard features in statistical software. On the
other hand, a stronger lag effect in second- and higher-order models would suggest that
conditions that produce death clustering are persistent.

Among the explanatory variables that could be associated with the risk of child death,
except for maternal birth cohort and religion, all the others had a significant effect. De-
mographic literature is already replete with explanations of these important variables and
we need not repeat them here. The large ethnic mortality differentials found in this study
of infant mortality in Kenya, however, deserve further explanation.

Ethnic mortality differentials in Kenya have been attributed to differences in levels of
socioeconomic development and in the distribution of health services between areas in-
habited by the various groups (Brockerhoff & Hewett 2000). Cultural differences in child-
care practices and beliefs on disease causation and patterns of diseases, however, could be
more important. Regarding beliefs on disease causation and the pattern of diseases, the
higher mortality among the Luo compared to other tribes is noteworthy. In particular, there
is also a marked difference between the Kisii and Luo, yet the two groups live in the same
province of Nyanza. This is consistent with Hill’s (1985) observation that the diverse
lifestyles of different ethnic groups produce characteristic patterns of mortality and fertil-
ity even among groups living in similar physical environments. The higher prevalence of
HIV/AIDS among the Luo may be responsible for the higher probability of infant mortal-
ity among them (Ministry of Health 2001) because of beliefs that HIV/AIDS is caused by
witchcraft and/or breaking of certain traditional taboos (Ocholla-Ayayo 1991). Among
the Mijikenda also, the first line of treatment for pregnancy related illness involves con-
sulting traditional medicine men and witchdoctors, because the illnesses are attributed to
spiritual causes (Boerma & Mati 1989). Potential pregnancy complications may therefore
go undetected until it is too late to save the life of the child and the mother. Nonethe-
less, the relationship between ethnicity and child mortality experience of families calls
for further research on ethno-cultural differences in childcare and health related behavior.

A major limitation of using the DHS to study child mortality is that information is
only available for children whose mothers are alive at the time of survey. The death of
children, especially at infancy, is directly related to maternal health in pregnancy and
at delivery, which suggests that maternal deaths cannot be separated from child deaths
(Pavard et al. 2005). Where the correlation between maternal and child deaths is high,
the magnitude of child death clustering could be underestimated. The ideal approach to
the issue is a comprehensive vital registration system monitoring every birth and death in-
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cluding the cause of death. Establishing and maintaining the system, however, is beyond
the economic ability of many less developed countries. In 1980, the Kenyan government
began a civil registration and demonstration project which was expected to cover all the
districts but implemented in stages. Because it is not mandatory and people have to travel
to distant district headquarters to register a birth or death, however, most of the events re-
main unreported. As a quick solution to this problem, questions on the survival of sisters’
children could be included in the DHS questionnaire’s section on sisters’ death resulting
from pregnancy. Another interim solution could be to combine vital registration informa-
tion, where it is available, with DHS data. It is also difficult to uncover the mechanisms
associated with the death of the previous child unless the endogeneity of birth interval is
addressed, which would require further research.

Overall, this study has shown that the death of the immediate preceding child has a
substantial and significant effect on the probability of the next child in the family dying
even after adjusting for unobserved heterogeneity and all the selected factors. There is
also modest, but significant, between-family variation in the probability of death. Several
issues have also been demonstrated by the statistical model presented here. First, a model
that ignores the correlation among siblings’ survival outcomes would overestimate the
effect of the death of the previous child. Second, a model that considers state dependence
and unobserved heterogeneity but drops the information on firstborns would also produce
biased results. Finally, in a dynamic model that examines the effects of both the death of
the previous child and also includes the preceding birth intervals as a regressor, the effect
of the former will attenuate.
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