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a research article

Found in translation?
A cohort perspective on tempo-adjusted life expectancy

Joshua R. Goldstein1

Abstract

What does tempo-adjusted period life expectancy measure? Taking a cohort perspective,
I show that under conditions of constant linear mortality shifts the tempo-adjusted period
indicator translates exactly to the cohort borne∗0(t) years earlier. I discuss the implications
of cohort translation for the interpretation and application of tempo-adjusted period life
expectancy.

1Office of Population Research, Princeton University, E-mail: josh@princeton.edu
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1. Introduction

Life expectancy at birth is at root a cohort concept. It tells us how long, on average, the
members of a cohort survive. Actual life expectancy can only be known fully for cohorts
born long ago. To summarize recent mortality conditions and period-to-period variation,
the hypothetical concept of period life expectancy is conventionally used. But even period
life expectancy refers conceptually to a cohort – the hypothetical one that lives according
to the rates observed in a single period.

When mortality conditions are improving, period life expectancy isless than that of
the cohort born in the period. This is because the hypothetical cohort following the period
life table is deprived of future mortality improvement.

I recite this basic property of period life expectancy because the “tempo adjusted”
method of measuring period life expectancy – as developed by Bongaarts & Feeney
(2002) – arrives at exactly the opposite conclusion. According to Bongaarts and Feeney,
period life expectancyoverstates longevity when mortality conditions are improving.
They conclude: “Our main finding is that the conventional calculation of period life ex-
pectancy at birth gives a misleading indication of how long we live. We are not living as
long as we thought we were.” (p. 25).

To be fair, Bongaarts and Feeney, except at a few points, are not talking about co-
horts. Instead, they intende∗0 as a period measure that tries to improve upon period life
expectancy. What such an improved period indicator actually measures is the subject of
much debate as is clear from many of the papers in this volume. The approach taken
here is to recast tempo-adjustment in cohort terms. Doing this enables us to resolve the
counter-intuitive direction of tempo-adjustment by showing which cohort B&F are refer-
ring to when they say “we.”

The approach is similar to that of Goldstein & Wachter (2004), which showed – using
a different model of temporal mortality change – the correspondence between period life
expectancye0 and the life expectancy of particular cohort. Here, I look at which cohort
has the life expectancy equal to currenttempo-adjusted life expectancye∗0. I find that
under linearly shifting mortality, defined below, tempo-adjusted life expectancy for year
t translates to the cohortdying in yeart: this is the cohortborn e∗0 years earlier.2

An additional assumption is needed for this simple cohort translation ofe∗0 to hold
exactly. B&F’s tempo-adjustment assumes that deaths are postponed uniformly across
all ages, with the size of the shift possibly varying from year to year. To this I add the
assumption that the size of the shift is constant from year to year, a pattern I call “linear
shifts.” As will be seen, the linear shift pattern is consistent with quite recent mortality

2This result was suggested in simulation by Bongaarts (2004), who also found that it held approximately in
modern real-world populations.
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trends above age 30 in low mortality populations. The linear shift assumption is, however,
not a general feature of human populations. Prior to World War II, change was distinctly
non-linear in many countries. It remains to be seen whether the recent linear shift pattern
will continue.

Under the linear shift model, the current tempo-adjusted period life expectancy has
the same value as the life expectancy of a past cohort. This correspondance with cohorts
from the past explains why Bongaarts and Feeney’s measure is less, not more, than current
period life expectancy.

Furthermore, under linear shifts, it is possible to obtain directly the life expectancy of
the cohort born in every period, including the current one, a quantity that is arguably of
more interest thane∗0.

Neither B&F’s tempo-adjustment nor the discussion presented here applies to life
expectancy at birth. Instead, both ignore all mortality before about age 30. For notational
simplicity, the current discussion follows B&F, using the shorthand ofe0, e∗0, andec

0 to
refer to the period, tempo-adjusted period, and cohort life expectancies at birth, assuming
no mortality below age 30. In traditional demographic notation, these quantities would be
writtene30 + 30, e∗30 + 30, andec

30 + 30.3

2. Proof of exact cohort translation

Let lc(a, t) be the surviving proportion of a cohort born at timet − a and ageda at time
t. For alla ≤ 0, definelc(a, t) = 1 for all t. This formulation amounts to the same thing
as B&F’s requirement of no mortality below age 30.

A proportionally shifting surfacelc(a, t) consistent with B&F’s proportionality as-
sumption is obtained by shifting the baselinelc(a, 0) up or down the age axis by an
amountF (t) such that

lc(a, t) = lc(a − F (t), 0), (1)

again lettinglc(a, t) = 1 for a − F (t) ≤ 0. The fact thatF (t) is not a function of age is
the B&F’s proportionality assumption. The additional assumption of linearity over time
in the shifts can be introduced by lettingF (t) = rt.

The cohort born at timeτ has life expectancy

ec
0(τ) =

∫ ∞

0

lc(a, τ + a) da.

3Although we use B&F’s shorthand here, it is worth keeping in mind that although mortality below age 30 is
low in modern industrialized populations,e30 + 30 does not equale0. In the 2002 Swedish female period
life table, ignoring under-30 mortality increases life expectancy by 0.6 years, more than a third of the 1.6
years tempo-effect that B&F find for Sweden 1980-1995.
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Following Bongaarts & Feeney (2003), the adjusted period life expectancye∗0(t) is
equal to

CAL(t) =
∫ ∞

0

lc(a, t)da.

I use theCAL notation to emphasize its correspondence with the “cross sectional average
length of life” introduced by Brouard (1986) and developed by Guillot (2003) .4

I want to show that
ec
0(τ) = CAL(τ + ec

0(τ)). (2)

Showing this demonstrates that the approximation given by Bongaarts (2004),

ec
0(t − e∗0(t)) ≈ e∗0(t), (3)

actually holds exactly.5

This equality is shown as follows by expressingec
0(τ) andCAL(τ + ec

0(τ)) in terms
of CAL(0) =

∫ ∞
0

lc(a, 0) da.
Linear proportional shifts means that the cohort born at timeτ has a survival curve that

resembles the initial profilelc(a, 0), except that each age “a” is shifted to agea−r(τ +a).
In effect, a member of the cohort “feels younger” than they are by a factor ofr(τ + a),
where therτ term accounts for the improvements up to the date at which the cohort is
born, and thera term accounts for the additional improvements obtained by the time the
cohort reaches agea. Cohort period life expectancy under linear shifts can be written in
terms of the baseline survival at time 0 as

ec
0(τ) =

∫ ∞

0

lc(a − r(τ + a), 0) da.

To evaluate, substituteu = a(1 − r) − rτ andda = du/(1 − r). This gives

ec
0(τ) =

1
1 − r

∫ ∞

0−rτ

lc(u, 0) du. (4)

Recalling that foru ≤ 0, lc(u) = 1, the integral evaluates to

ec
0(τ) =

CAL(0) + rτ

1 − r
. (5)

4The quantityCAL used here differs from that used by Brouard and Guillot in that it assumes no child or
young adult mortality under a given age such as 30.

5To see the correspondance, substitutet = τ + ec
0(τ) and note that from (2)ec

0(τ) = CAL(t) = e∗0(t).
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We can evaluateCAL(τ + ec
0(τ)) in a similar manner. The linearly shifting age

distribution means thatCAL(t) is simply growing linearly with time. For anyt,

CAL(t) =
∫ ∞

0

lc(a, t) da =
∫ ∞

0

lc(a − rt, 0) da.

Substitutingu = a − rt anddu = da,

CAL(t) =
∫ ∞−rt

0−rt

lc(u) du = CAL(0) + rt. (6)

To prove (2), we are interested int = τ + ec
0(τ). From (6),

CAL(τ + ec
0(τ)) = CAL(0) + r(τ + ec

0(τ)).

Substituting from (5) forec
0(τ),

CAL(τ + ec
0(τ)) = CAL(0) + rτ + r

CAL(0) + rτ

1 − r
,

which simplifies to

CAL(τ + ec
0(τ)) =

CAL(0) + rτ

1 − r
. (7)

The right-hand side of this last expression is identical to the right-hand side of equation
(5) for ec

0(τ), which is what we wanted to show to prove (2).
Note that this change of variable approach is perfectly general for any survival curve

lc(a, 0) and anyr �= 1. It does not require Gompertzian survival or any other particular
form of the hazards.

3. Discussion

We have shown that tempo-adjusted period life expectancye∗0(t) under linear shifts is
equal to the life expectancy of the cohort dying in that yeart.

The equality of tempo-adjusted life expectancy with lagged cohort life expectancy
provides us with an alternative way to think aboute∗0. Whereas B&F usee∗0 as a counter-
factual estimate of period mortality corrected for tempo distortion, we have shown here
that in the context of steadily shifting survival curvese∗0 is also a measure of cohort life
expectancy.

Both interpretations are interesting and potentially useful. I would argue that the B&F
interpretation is most valuable in conditions of sudden mortality change, whereas the
cohort interpretation is more valuable in conditions of steady mortality change.
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Below I lay out two extreme scenarios that help us to understand the difference. Bon-
gaarts and Feeney introduced the first in their 2002 paper; the second is explored by their
paper in this volume as well as the paper by Rodriguez (2006).

3.1 A single magic pill

The story of the “life extension” pill discussed by Bongaarts and Feeney (2003) illustrates
the potential advantages of tempo-adjustment in the case of a sudden shift in survival.
(See Figure 1a.) On January 1, everyone in a previously stationary population takes a
pill postponing their previously programmed date of death by 3 months. Everyone born
afterwards also takes the pill. The effect of such a pill in the year it is taken is to reduce
the number of deaths by one-fourth, since no one will die in the first 3 months of the year.
In the year the pill is introduced, death rates also fall by about one-fourth, raising life
expectancy dramatically, not by the three months indicated by the pill but by several years
because of the enormous drop in death rates.

In the case of a single such pill, period life expectancy spikes in the year the pill is
taken and then falls thereafter to a constant value equal to the pre-pill life expectancy plus
the extension granted by the pill. This makes the measurement taken in the year the pill
appeared suspect, a candidate for tempo-adjustment. As panel (a) shows,e0 shows a spike
in the year the pill is introduced, bute∗0 shows no spike, instead attributing the appropriate
3 month increase in life expectancy.

The figure also shows cohort life expectancy for those born in each year. From a
cohort view, adjusted-life expectancy performs well in the year that the pill is taken. In
that year, unadjustede0 overestimates the life expectancy of the cohort being born, but
the adjusted period measuree∗0 accurately predicts cohort life expectancy. In the years
following the pill introduction, bothe∗0 ande0 are equal toec

0. In the years before the
pill is taken, however, neither period life expectancy nor adjusted period life expectancy
matches cohort life expectancy because neither period measure can foresee the subsequent
sudden increase in longevity.

The lesson to be drawn from this scenario is that under a sudden mortality shock, akin
to the one-time pill6, e∗0 provides a better indication of the implications of the shock for
cohort mortality than doese0.

3.2 A series of magic pills

Now let us consider the case where such pills are given year after year, continually re-
extending life by some constant amount each year. This scenario is the one investigated

6See Le Bras (2005), who argues that even those one-time shocks that are observed do not occur in a manner
that delay or advance deaths uniformly by age.
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Figure 1: Time paths of period and cohort life expectancy and of tempo-adjusted
period life expectancy in (a) single shift scenario and (b) linear shift
scenario
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mathematically above and is illustrated in Figure 1b. In this case, we still havee(t) larger
thane∗0(t), but rather than this difference occurring in a single year as in the single-pill
example, it persists over time. Now, the equality ofe∗0(t) is not with the cohort born in
yeart, as in the single year example, but rather with the cohort borne∗0(t) years earlier
that isdying in year t. This result from the formal analysis is illustrated by the dotted
lines in the figure showing thatec

0(0) = 70 = e∗0(70).
Under linear shifts that result from a series of pills, it would clearly be wrong to

interpret tempo-adjusted life expectancy as an estimate of the cohort born in yeart. The
adjustment moves period life expectancy farther from, not closer to, that of the cohort.

3.3 Which scenario is more realistic?

We can now ask which of these two cases bears more resemblance to observed patterns of
mortality change. Here there is no debate. Bongaarts and Feeney (2002 and 2003) answer
this question quite clearly in their empirical analysis of 1980-1995 France, Sweden and
the United States (See for example figure 6 of B&F 2003). In every case, the improvement
of mortality by all measures has been steady. There is no historical example that bears
any resemblance to the one-time pill example. Tuljapurkar, Li & Boe (2000) show, using
methods different from the shift model, that since World War II, steady mortality decline
is the rule throughout the industrialized world.

It is useful to look at a longer course of time. Panel (a) showsCAL – what Bongaarts
and Feeney calle∗0 – for Sweden females from 1920 to 1995. Bongaarts & Feeney (2003)
figure 6 shows the last 15 years of this series. Linearity inCAL implies linear shifts. We
see that the near linearity they find for 1980-1995 is a continuation of the post-World War
II pattern. Before this, however, the pace of improvement was considerably slower. There
is no evidence from looking atCAL of sporadic large mortality shifts of the kind in the
single-pill scenario. Rather, the last half-century has been consistent with the linear shift
scenario.

We can see in detail at how close both the proportionality and linear shift assumptions
hold by looking at the fulllc(a, t) surface (Panel (b)). The contour plot shows the isoclines
of lc(x, t) at the levels seen in 1950 forx = 30, 35, . . . 95. For example, the contour
labeled “0.048” shows the age at whichlc(90, 1950) is reached over the course of the
century, and we can see that by 1995 this level of survival was reached at age 95 rather
than 90.

Proportionality can be checked by looking at whether the slopes at different ages
change simultaneously. The linearity of the shifts requires further that the contours be
straight lines. The figure shows there were few shifts at all in the first two decades of the
century in Sweden. Starting after World War I, and the influenza epidemic, survival to
younger ages started to shift, followed by shifts in survival to older ages after World War
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Figure 2: Observed time paths of mortality change for Swedish females.
Panel (a): Mortality change over all ages as measured by CAL(t)
Panel (b): Contour plot of cohort survival lc(a, t) using isoclines
intersecting lc(30), lc(35), . . . , lc(95) in 1950
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II. Since about 1950, the contours are nearly linear and nearly parallel, particularly above
age 60, when most deaths are occurring. Overall, neither proportionality or linearity
seems a good description for the whole century. However, the linear shift model does not
seem at odds with recent decades. The only evidence of mortality change that resembles
the single-pill example is perhaps the 1918 influenza epidemic, but even this does not
appear across all ages.

3.4 Telling the future

If we expect linear shifts well into the future, then we can go one step further. We have
seen that under linear shifts,e∗0 understates even more dramatically than period life ex-
pectancy the survival of those born in a period. However, the same derivation we used to
show the cohort that has life expectancye∗0(t) can also be used to show the life expectancy
of the cohort born in yeart. Replacingτ with t and substituting from (6), we find

ec
0(t) = e∗∗0 =

e∗0(t)
1 − r

, (8)

where we usee∗∗0 to denote the rescalede∗0. Althoughe∗0(t) is itself a rather out-of-date
measure referring to a cohort born long beforet, the simplicity of the linear shift model
allows us to go frome∗0(t) to the cohort born in yeart by rescaling.

These exact relationships for steady mortality change should hold approximately when
there are small variations in the pace mortality improvement. If there is no temporal auto-
correlation, the variations will cancel each other out. Such random ups and downs seem to
encompasses the modern experience of mortality decline in advanced industrial countries,
forming the basis of the Lee-Carter stochastic forecasting method (Lee and Carter 1992).
Systematic slowdowns or accelerations that last many years can make the relationship
betweene∗0 andec

0 quite different from the results found here.7

7A more general expression for cohort mortality can be given as follows. Letrt be the shift in yeart and
Rt be the cumulative shift

∫ t
0 rtdt. In this case, cohort life expectancy is given in terms of the baseline

survival profile as

ec
0(τ) =

∫ ∞

0
lc(a − Rτ+a, 0) da.

Substitutingu = a − F (τ + a) andda = du/[1 − r(τ + a)],

ec
0(τ) =

∫ ∞

−Fτ

lc(u)[1 − rτ+a]−1 du.

This reduces to (4) for whenrτ+a is a constant. Whenrτ+a varies only slightly and in a manner that is
uncorrelated withlc(u), then fluctuations should not influenceec

0(τ) much, since shifts larger-than-average
shifts will be cancelled out by smaller-than-average shifts.
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3.5 The order of mortality measures

With an exact expression for cohort life expectancy, we can now provide a full description
of the ordering of different measures of life expectancy and their cohort translations under
linear shifts. Table 1 shows tempo-adjusted period life expectancy, unadjusted period life
expectancy, and rescaled tempo-adjusted life expectancy for Sweden using the same data
as B&F and the cohort translation of these quantities. The table reiterates the point we
began with that cohort life expectancy is larger, not smaller, than period life expectancy
if we are considering the cohort born in the period. It shows thate∗0 actually refers to the
cohorts born around 1900-1915, not cohorts born in 1980-1995.

In this example, period life expectancy and tempo-adjusted period life expectancy are
close to each other relative to cohort life expectancy. The orderinge∗0 < e0 << e∗∗0
applies quite generally in conditions of improving mortality. LettingH denote Keyfitz’s
measure of life table entropy,e∗0 increases the observed mortality rates by a factor of about
1 + r, which reduces life expectancy by about a factor of1 − Hr (Keyfitz 1985). Life
table entropy is small, on the order of 0.2, and so ifr = 0.1, e∗0 ≈ 0.98e0. To see thate∗∗0
is larger than either of these, note that dividinge∗0 by 1 − r gives a quantity substantially
greater thane0.8

Table 1: Ordering and Cohort Translation of Period and Tempo-adjusted Period
Measures Under Linear Shifts

Period or Estimate for Sweden, Cohort
tempo-adjusted 1980-95 translation
period measure
e∗30 + 30 79.4 ec

0(t − e∗0) ≈ ec
0(1900 − 1915)a

e30 + 30 81.1 ec
0(t − λ) ≈ ec

0(1905 − 1920)b

e∗∗30 + 30 =
e∗0+30

(1−r)
94.5 ec

0(t) ≈ ec
0(1980 − 1995)c

a This cohort life table value was reached by the cohort of 1909, according to www.mortality.org.
b λ < e∗

0 but exact value unknown; 1905-1920 is a rough estimate.
c Assuming continued linear shifts.

Values for e∗
30 + 30 and e30 + 30 from B&F(2004) Table 1. e∗∗

30 + 30 calculated as
e∗
0

(1−r) using r = 0.16 as

estimated by author from www.mortality.org. In “Cohort translation” column ec
0 is used as shorthand for ec

30 + 30.

Without a crystal ball, we don’t know for sure how long the cohorts born from 1980
to 1995 will live. But what we do know, assuming continued mortality decline, is thate∗0

8Formally, if entropy is sufficiently large then the inequality need not hold. But highH implies a high
variance of age at death, typically in the form of high mortality among children, an age-group that is
excluded from the Bongaarts-Feeney shift model.
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is clearly the worst measure, giving an even lower figure than the already too low period
life expectancy. If we are going to adjust period life expectancy, we should readjust it
again to produce not the cohort born long ago, but rather our best guess at the cohort born
today,e∗∗.9

4. Conclusion

Some critics of Bongaarts and Feeney’s theory of mortality tempo effects argue that its
assumption of uniform postponement of death across all ages is unrealistic. Others argue
thate∗0 is not really a period measure, but rather depends on the history of the population.
In this paper, my approach has not been to try to debunk tempo-adjustment but rather to
take it even further by assuming that the Bongaarts and Feeney’s uniform shift repeats
itself over many decades – so long that cohort mortality becomes a simple function of the
baseline mortality schedule and the pace of the shift.

Under these conditions, two results were found. First,e∗0(t) translates to cohort life
expectancy for those borne∗0(t) years earlier, long before the period under consideration.
Second, the cohort life expectancy of those born today, or in any yeart, can be found by
a simple inflation ofe∗0(t). Viewed this way,e∗0(t) itself is not a measure of great interest.
It does not tell us what is happening in yeart – this is given by the unadjusted period life
table. It does not tell us the future – this is given by the life table of the new-born cohort.
Rather it tells us about the cohort born in the past that is, on average, dying in yeart.10

If mortality change were to be sudden, and to occur in such a way as to advance or
to postpone deaths uniformly across all ages, tempo-adjustment could produce measures
giving a valuable sense of the implications of the mortality rates seen during shocks. The
difficulty, so far, is that mortality change has not occurred in this way. Recent history in
the industrialized world has been has been one of steady, not sudden, mortality change. In
this context, the linear shift model provides a framework for understanding what tempo-
adjusted life expectancy is actually measuring and for developing even more informative
indicators.

9Incidentally, this figure of 94.5 years is not out-of-line with optimistic forecasts. Oeppen & Vaupel (2002)
predict that record period life expectancy will by 95 by 2040, which would apply to cohorts born about
1970 or 1980 (Goldstein and Wachter 2004).

10The backward-looking tendency ofe∗0 is not due to the way it is measured, which after all is from current
data, but rather from fact that the post-adjustment longevity estimates are equal to those of cohorts born
long ago. Wachter (2005) shows that the differential equations that definee∗0 effectively define a moving
average of recent period life expectancies.
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