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Tempo effect on age-specific death rates  

Shiro Horiuchi 1 

Abstract 

It is widely known that shifts of cohort fertility schedule can produce misleading trends 
in period TFR. This note shows that such a “tempo bias” can occur in age-specific 
mortality as well: if the age distribution of cohort deaths shifts toward older (younger) 
ages, the period age-specific death rate is biased downward (upward). 

                                                        
1 Laboratory of Populations, Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, U.S.A. E-mail: horiush@rockefeller.edu 
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1. Introduction 

Relationships between “quantum” and “tempo” of demographic behavior are crucial for 
understanding population dynamics, in particular, discrepancies between demographic 
profiles of periods and cohorts. In this note, tempo measures are defined as indicators of 
the location and shape of the age curve of the given demographic behavior. Thus the 
first and higher moments of the age curve are tempo measures. Quantum measures are 
based on the area under the age curve, either over the entire life span or for a finite age 
range. For example, the number of deaths is a function of age, the mean and variance of 
age at death are tempo measures of the age curve, and the total number of deaths and 
the crude death rate are quantum measures.  

Changes in tempo and quantum of demographic behavior among cohorts and over 
periods can produce trends that are misleading, apparently inconsistent, or difficult to 
interpret. Such trends may be considered biased or distorted, even though the concept of 
the true value is not always clear. It is widely known that shifts of cohort fertility 
schedule can produce misleading trends in period TFR (Ryder 1956). 

Bongaarts and Feeney (2002, 2003) argue that tempo biases occur in mortality as 
well. Using an artificial example, Feeney (2003, Figure 4) has demonstrated that cohort 
changes in the death distribution within an age interval can distort the period death rate 
for the age interval. The example is essentially a straightforward conversion of their 
previous fertility example (Bongaarts and Feeney 1998, Figure 2) from birth to death. It 
has been developed for a special case that all deaths occur only at one point in the age 
range and the point shifts linearly among cohorts. 

The purpose of this note is to show that tempo effects can operate in mortality, 
using a more general assumption about the shape and shift of death distribution than 
Feeney’s hypothetical example. Sections 2 and 3 give a mathematical proof that if the 
age distribution of cohort deaths within an age interval shifts toward older (younger) 
ages, the period number of deaths in the age interval and, in turn, the age-specific death 
rate are biased downward (upward). Section 2 discusses main points of the proof in an 
intuitive and visually oriented way and Section 3 presents the inference in a formal 
manner. In addition, two hypothetical illustrations of mortality tempo effect by 
Bongaarts and Feeney are examined in Appendix, with focus on their implications for 
age-specific survival ratios. 

 
 

2. Intuitive visual explanation 

Two notions, which are familiar to demographers, are essential to the proof. The first is 
the split of Lexis square into two triangles. Diagram 1 shows a Lexis diagram for the 
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age interval between x and x+1 over the time period from t-1 to t+2. Time-age 
coordinates of six important points in Diagram 1 are as follows: A(t,x+1), B(t+1,x+1), 
C(t+2,x+1), D(t-1,x), E(t,x) and F(t+1,x). We compare the number of deaths in the 
square ABFE (the estimation period), that in the parallelogram ABED (the earlier 
cohort) and that in BCFE (the later cohort). If both the number and the distribution of 
deaths in the age interval are identical for the two cohorts and age-specific deaths are 
evenly distributed over time within each cohort, the square ABFE also has the same 
number of deaths as each parallelogram has. 

 

Diagram 1: Lexis Diagram for one period (ABFE) and two cohorts  
(ABED and BCFE) 

x�

x+1�

t�t-1�

B�

t+1�
time�

age�

A� C�

B�

E� F�D�

t+2�

x+y1�

x+y2�

 

 

Suppose that the number of deaths that occur between x and x+1 is identical for 
the two cohorts, but the distribution of those deaths within the age interval is older in 
the later cohort. Then, at relatively young ages between x and x+1, more deaths occur 
in the earlier cohort than in the later cohort; but at relatively older ages in the range, 
more deaths occur in the later cohort than in the earlier cohort. Therefore, more deaths 
occur in the triangle AED than in BFE, and more deaths occur in the triangle BCF than 
in ABE. Because the square ABFE can be split into two triangles BFE and ABE, both 
of which have fewer deaths than their corresponding triangles have, the number of 
deaths in ABFE is smaller than that in ABED and that in BCFE. Because usually the 
number of person-years does not differ significantly among ABFE, ABED and BCFE, 
this leads to a paradoxical result that the age-specific death rate for the period is lower 
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than that for either one of the two cohorts that pass through the age interval during the 
period. 

The second main point of the proof is the definition of “shift of age distribution of 
deaths toward older ages (or more briefly, aging of death distribution) within a given 
age range.” This issue is essential when the continuous cohort (instead of two discrete 
cohorts) is considered. There are possibly at least several different definitions of the 
concept, including those based on central tendency measures (e.g., rise in the mean age 
at death). In this note, the shift is defined as an overall rise of survival curve, as 
illustrated by the three curves in Figure 1. If the age distribution of deaths in population 
A is older than that in population B, then for any age (excluding the both ends of the 
age range), the proportion of all deaths above the age is greater in A than in B, and 
equivalently, the proportion of all deaths below the age is smaller in A than in B. 

 

Figure 1: Survival curves for those who died within the one-year age interval 

 

This may seem to be a strong condition, because the inequality has to hold at any 
age. However, to my knowledge, in any of widely used model life table systems, 
survival curves within the system do not cross over with each other, as illustrated in 
Figure 2. This means that in the model life system, the age distribution of deaths over 
the entire life span shifts toward older ages in the manner defined above. 

Figure 1 shows survival curves for three cohorts over the one-year age range from 
x to x+1. It can be viewed as a part (for example, the small rectangle on the highest 
curve) of Figure 2, which covers the entire life span. Thus the survival curves in Figure 
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1 are for only those who died in the age interval, excluding all those who died outside 
the interval. It is assumed that all of the three cohorts have the same number of 
survivors at age x and the same number of deaths between x and x+1, but different 
death distributions within the one-year age range. 

 

Figure 2: Survival curves over the human life span 

 

 
Now, for further discussion, the definition of “cohort” needs to be changed from 

discrete (the two parallelograms in Diagram 1) to continuous (infinitely many 45-
degree diagonal lines in the parallelogram ACFD). Let the cohort aged x at t (line EB) 
be called the mid-cohort, which splits the rest into earlier cohorts and later cohorts. 
Suppose that the number of deaths2 in the age interval is same for all cohorts, but the 
age distribution of deaths shifts toward older ages as defined above. Then the three 
survival curves in Figure 1, from high to low, can be considered to represent mortality 
experiences of a later cohort, the mid-cohort, and an earlier cohort in Diagram 1. 
Obviously, for any age x+y in the age range (y is between 0 and 1), the number of 
deaths above age x+y (corresponding to l(x+y)-l(x+1), the dashed line in Figure 1) in an 
earlier cohort is lower than that in the mid-cohort, and the number of deaths below age 
x+y (corresponding to l(x)-l(x+y), the dash-dot line in Figure 1) in an later cohort is 
lower than that in the mid-cohort. 

                                                        
2  It is more accurate to call this “the single-year cohort equivalent of the density of death” rather than just “the number of deaths,” but for 

simplicity, this lengthy expression is not used in this note. 
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Diagram 1 indicates, however, that for an earlier cohort, deaths above a certain age 
occur during the period from t to t+1 (e.g., on the dashed line in Diagram 1), and for a 
later cohort, deaths below a certain age occur in the period (e.g., on the dash-dot line in 
Diagram 1). (Note that the vertical dashed (dash-dot) line at age x+y1 (age x+y2) in 
Figure 2 corresponds to the number of deaths occurred on the diagonal dashed (dash-
dot) line in Diagram 1.) Thus, for any cohort of the both earlier and later groups, the 
number of deaths that occur between t and t+1 is smaller than the number of deaths that 
would occur to the cohort during the period if the cohort has the same death distribution 
as that of the mid-cohort. This means that if the death distribution shifts toward old 
ages, the total number of deaths in ABFE is smaller than the total number of deaths in 
ABFE that would occur if the death distribution remains same as that of the mid-cohort 
(or actually that of any cohort because the number of deaths for each cohort was set to 
be equal).  

Therefore, a cohort shift of death distribution toward older ages seems to 
downwardly bias the age-specific number of period deaths. In the next section, this 
intuitive explanation is presented in a more formal manner. 

 
 

3. Mathematical presentation 

We use the regular continuous-variable Lexis framework. Let d(x,t) be the number 
(density) of deaths at age x and time t, and let dc(x,u) be the number of deaths at age x 
for the cohort born at time u: 

 
),(),( xuxduxdc += .      (1) 

 
The cumulative death function from age x to x+y is given by 

 

∫ +=
y

dztzxdtyxF
0

),(),,(  for time t      (2) 

 
and 

 

∫ +=
y

cc dzuzxduyxF
0

),(),,(  for cohort born at time u.   (3) 
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We consider a Lexis square for the age interval between x and x+1 and the time 
period from t and t+1 (ABFE in Diagram 1). The number (density) of deaths that occur 
in the square is: 

 

∫ ∫
+ +

=
1 1

),()1,,1,(
t

t

x

x
dyduuydtxD .     (4) 

 
Now, it is assumed that the cumulated death function from age x and x+1 is 

constant for all cohorts: 
 

guxFc =),1,(        (5) 

 
for any u between t-x-1 and t-x+1. This assumption is needed in order to examine 
effects of cohort changes in the age distribution of deaths, independently of effects of 
cohort changes in the number of deaths. Obviously, if the age distribution of age at 
death remain constant among cohorts, i.e., if  

 
),,(),,( 21 uyxFuyxF cc =       (6) 

 
for any y between 0 and 1 and any u1 and u2 between t-x-1 and t-x+1, then the total 
number of deaths in the Lexis square is 

 

gtxD =)1,,1,( .       (7) 

 
Suppose that the distribution of age at death within the age interval shifts toward 

older ages among cohorts. As described earlier, this means, by definition, 
 

2121  if  ),,(),,( uuuyxFuyxF cc ><      (8) 

 
for any y between 0 and 1 (excluding 0 and 1) and any u1 and u2 between t-x-1 and t-
x+1. 

Inequality (8) concerns deaths below age x+y. As for deaths above age x+y, we 
have 

 

2121  if  ),,(),,( uuuyxFguyxFg cc <−<− .    (9) 
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Cohorts that pass through the Lexis square were born between t-x-1 and t-x+1 and 
reached age x between t-1 and t+1. Let the cohort born at t-x be called the mid-cohort. 
It follows from (8) and (9) that for a cohort born after the mid-cohort, i.e. for xtu −>  

 
),,(),,( xtyxFuyxF cc −< ,      (10) 

 
and for a cohort born before the mid-cohort, i.e., for  xtu −< ,  

 
),,(),,( xtyxFguyxFg cc −−<− .     (11) 

 
By separating deaths during the period into deaths to cohorts born before and after 

the mid-cohort and using (10) and (11), the total number of deaths in the Lexis square is 
given by 
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          (12) 
 
 

4. Discussion 

As indicated above, if the number of deaths in an age range remains constant among 
cohorts but the death distribution within the age interval shifts toward older ages, the 
number of deaths in the age range for the estimation period is smaller than the 
corresponding number of cohort deaths. Similarly, a cohort shift of death distribution 
toward younger ages makes the number of period deaths higher than the corresponding 
number of cohort deaths. 

The proof was given for the age-specific number of deaths, but essentially the 
same effect on the age-specific death rate is expected, because the relative effect on the 
number of person-years (the denominator of age-specific death rate) is smaller than the 
effect on the number of deaths (the numerator) (Feeney 2003). This is mainly because 
the shift does not significantly change the number of person-years of those who do not 
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die in the age interval. In most one-year age intervals, a vast majority of persons survive 
through the interval. 

In addition, the number of person-years for the period is likely to be very close to 
the number of person-years that would be obtained if the death distributions of all 
cohorts are identical to that of the mid-cohort, because losses in ABE and gains in BFE 
cancel each other to some extent.3 Thus, it can be concluded that a shift of death 
distribution toward older (younger) ages is likely to bias the age-specific death rate 
downward (upward). 

A few points about the assumptions adopted in this analytical study may be 
noteworthy. The age-specific number of deaths was assumed constant among cohorts. 
Admittedly, this is not realistic for two reasons. First, when the age-specific death rate 
changes, usually both the number and distribution of deaths within the age range 
change. When the overall mortality level declines, the number of deaths tends to 
increase above the modal age of adult deaths and decrease below it, shifting the mode to 
the right. Second, when the distribution of deaths moves toward older or younger ages, 
the shift occurs over a wide age range, thereby changing the number of deaths in each 
age group. Furthermore, in practice, the tempo effect will be numerically small if the 
distributional change is restricted to a narrow age range. 

The purpose of this note, however, is not to produce a realistic and comprehensive 
picture of mortality change. Probably there are different pathways through which 
mortality changes bias period measures, and this investigation is an attempt to clarify 
the logical mechanism of one of those pathways. Thus the cohort number of deaths was 
assumed constant in order to investigate effects of cohort changes in the distribution of 
deaths independently of other effects that may confound the analysis. 

Concerning the shift of age distribution, this analytical study is less restrictive than 
some previous studies of tempo effects, in which linear parallel shifts of the age curves 
were assumed (Ryder 1956, Inaba 1986, Bongaarts and Feeney 1998, Feeney 2003). 
The assumed pattern of shift in this study allows changes to occur in both the location 
and shape of distribution. 
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mid-cohort. Similarly, l(x+y) of a later cohort, which passes through BFE, is larger that of the mid-cohort. 
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Appendix 

An implication of transition between two stationary age distributions for age-
specific death rates 

This appendix examines two artificial examples of mortality tempo effects presented by 
Bongaarts and Feeney (2002: Figure 3; 2003: Figure 5) and discusses an implication for 
age-specific death rates of the population dynamics assumed in the examples. In both of 
the examples, the hypothetical population shifts from a stationary age distribution to 
another stationary distribution through a one-year transition period. Thus there are three 
different periods (first stationary period, transition period, and second stationary 
period), and the number of births remains unchanged throughout these three periods. 
The mortality level in the second stationary period is slightly lower than that in the first 
stationary period. 

It seems reasonable to expect that the mortality level for the transition period falls 
between those for the two stationary periods. However, the hypothetical computations 
show that the total number of annual deaths and the crude death rate for the transition 
period are substantially lower and the life expectancy at birth is considerably higher 
than those for either stationary period. For example, in one of the hypothetical 
illustrations, the life expectancy rises suddenly from 70.0 years in the first stationary 
period to about 73 in the transition period, and then falls to 70.25 in the second 
stationary period. This anomalous trend was interpreted to show the tendency for the 
life expectancy to be distorted when the mortality pattern is changing. 

However, it is important to note that these examples were produced under the 
special scenario of shift between two stationary age distributions. In the hypothetical 
populations, tempo effects of mortality change seem to be confounded with effects on 
mortality trend of this particular type of population dynamics. This appendix will 
explain why the special scenario leads to the anomalous mortality trend. 

Suppose that a population is stationary before time T and after time T+1 and the 
age distribution shifts between T and T+1. The number of individuals in the age interval 
between x and x+1 at time t is given by  

 
N(x,t) = N1(x)  if t ≤ T and N(x,t) = N2(x)  if t ≥ T+1 (A.1) 
 

where N1(x) and N2(x) are the number of individuals in the age interval between x and 
x+1 during the first stationary period and that during the second stationary period, 
respectively. 
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It is assumed that the number of births remains constant and the force of mortality 
at any age is lower in the second stationary period than in the first stationary period. 
Then 

 
N1(x) < N2(x) for any x > 0 (A.2) 
 

if x is not greater the highest age of the second stationary population. 
The age-specific survival ratio from the age interval between x and x+1 to the next 

age interval between x+1 and x+2 is N1(x+1)/ N1(x) for the first stationary period, 
N2(x+1)/N2(x) for the second stationary period, and N2(x+1)/ N1(x) for the one-year 
transition period. The survival ratio for the transition period is higher than that for the 
first stationary period because of the inequality of the numerator, i.e., N2(x+1) > 
N1(x+1). It is higher than that for the second stationary period as well, because of the 
inequality of the denominator, i.e., N1(x) < N2(x).  

The above results can be generalized to any length u of transition period by 
considering the survival ratio from the age interval between x and x+1 to the age 
interval between x+u and x+u+1, as far as x+u is under the highest age of the 
population. Obviously, high age-specific survival ratios imply low age-specific death 
rates. Thus it can be claimed that if the population shifts between two stationary age 
distributions and the mortality level in the later stationary period is lower (higher) than 
that in the earlier stationary period, then age-specific death rates in the transition period 
tend to be lower (higher) than those in either stationary period. 

This anomalous mortality trend is due to the very special type of age structure 
change, i.e., shift from a stationary population to another. Suppose that the mortality 
pattern remains constant for a while, then changes in a short period of time, and remains 
constant again thereafter. Usually, it will take many years for the population to 
eventually become stationary. (The number of births is assumed unchanged in this 
population.) However, the two simulations adopt an unusual scenario that the 
population becomes stationary immediately after some mortality change. Therefore, the 
high life expectancy during the transition period in the artificial examples may be 
attributable mainly to this unusual scenario, i.e., shift between two stationary age 
distributions. It does not seem to be a typical tempo bias.  

 


