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Mortality tempo versus removal of causes of mortality: 
opposite views leading to different estimations of life expectancy 

Hervé Le Bras 1 

Abstract  

We propose an alternative way of dealing with mortality tempo. Bongaarts and Feeney 
have developed a model that assumes a fixed delay postponing each death. Our model, 
however, assumes that changes take place with the removal of a given cause of 
mortality. Cross-sectional risks of mortality by age and expectations of life therefore are 
not biased, contrary to the model of the two authors. Treating the two approaches as 
two particular cases of a more general process, we demonstrate that these two particular 
cases are the only ones that have general properties: The only model enjoying a 
decomposable expression is the removal model and the only model enjoying the 
proportionality property is the fixed delay model. 
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1. Introduction 

A change in the timing of events does not exert the same influence on cross-sectional 
mortality indexes (i.e. life expectancy) as it does on fertility (i.e. the total fertility rate). 
The total fertility rate measures an intensity that is sensitive to the changing pace as 
well as delays or advances in events. In a life table, by contrast, the intensity remains 
equal to one because death occurs only once and all die in the end. Can we thus assert 
that timing has no effect on mortality indexes? In two recent papers (2,3), John 
Bongaarts and Griffith Feeney have taken the opposite stance, showing that delays or 
advances in mortality modified cross-sectional life expectancy. They found that the 
delay observed led to an overestimation by 2.4 years in France and by 1.6 years in the 
US and Sweden.  

Following a brief overview of the computations made by the two authors, we 
propose an alternative way of dealing with mortality changes ; using multiple 
decrement life-tables and removing different causes of death. In contrast to the delay 
model advocated by Bongaarts and Feeney, our model shows no discrepancy between 
cross-sectional and longitudinal indexes. We argue that our model is more general than 
that of the above authors and more at pace with the true nature of mortality processes, 
the latter of which cannot be compared with nuptial or fertility processes. In brief, 
delays are a causal factor in the field of fertility and a consequential one in the field of 
mortality. 

 
 

2. Decreasing mortality as a sign of delay in deaths  

Let us suppose that on January 1st of year t, all deaths are suddenly postponed by a 
delay equal to a proportion u of the same year. When we follow this change on a Lexis 
diagram, the half plane at the right of vertical t is translated into a 45 degree direction 
by a vector (u,u). In the vertical strip stretching between t and t+u, there is no death at 
all. After t+u, the deaths reappear as before, this time, however, with a shift of u in age. 
Thus, instant life expectancy becomes infinite in the gap because no death occurs. After 
t+u, it reverts to its former value (i.e. the value before the change), increased by u. 
Despite the fact the changes occurred in t=0, the cross-sectional value of life 
expectancy does not reflect the true conditions of mortality during a period of u until it 
resumes its actual longitudinal value in t+u. When we compute the mortality table on 
an annual basis during year 0 following the change, each number of deaths by age 
group is reduced by a proportion of u, independent of age. In the literature, such a 
change is called the “proportionality rule” and is in keeping with the observed data on 
modern countries. When we use these deaths to compute the forces (quotients) of 
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mortality and to build a life table, we find an expectation of life that is higher than 
during the preceding and following years. This is an example of the discrepancy 
introduced between longitudinal and cross-sectional measures when delays occur. 

The same discrepancy is found when the delay changes (increases) continually 
through time. Le t=0 be the beginning of the process. The delay ending in t will be 
called f(t), s(x,t) denotes the survival function at age x and time t, and will be called S(x) 
before t=0, instead of s(x,0). With these notations, we get: 

 
s(x,t) = S (x+t-f(t) - t) = S(x-f(t)). 
 
The deaths since time t-f(t) or age x-f(t) were not postponed by a delay greater than 

f(t). From this we deduce an expression of deaths d(x,t)dt between t and t+dt (and x and 
x+dx) and of the forces of mortality q(x,t) by dividing these deaths by the survivors at 
that time and age: 

 
d(x,t)dt = d(x,t)dx  = s(x,t) - s(x+dt, t+dt), 
 = S(x-f(t)) – S(x + dt - f(t+dt)), 
 = S(x-f(t)) –S(x-f(t)) – (1-f’(t))S’(x-f(t))dt, 
 d(x,t) =  (1-f’(t)) D(x-f(t)).   
 

Consequently: 
 
q(x,t) =  (1-f’(t))µ(x-f(t)),      (1) 
 

where µ (x) is the force of mortality at age x  and initial time t=0. 
A simple case is that of a linear evolution of the delay at rate α which means that  f 

(t) = αt. It follows that: 
 
d(x,t) = (1-α )D(x- αt).      (2) 
 
The same relationship holds for the forces of mortality. By integrating them, the 

relationship can be expressed in terms of survivors:  
 
s(x,t) = (S(x-αt)) (1-α)

. 

 
Cross-sectional life expectancy at time t, e(t) is: 

 

e(t) = 
0

ω

∫ S(x,t)dx  = 
0

ω

∫  (S(x-αt)) (1-α) dx, 
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  = 
0

ω

∫  (S(x)) (1-α)dx  + αt. 

 
If the delay is stabilized just after t, then the longitudinal expectation of life E(t) 

will become 
 

E(t) = 
0

ω

∫  (S(x)) dx  + αt.      (3) 

 
The more the computation of e(t) overestimates the gain in life expectancy, the 

more rapidly the delay increases. For example, in Table 1 we computed the discrepancy 
value of the most recent life table for France for different values of the rate of increase 
(the delays were taken into account at age 36 and over). 

 
Table 1:  Overestimation of life expectancy at various rates of increase  
   of the delay 

 
Annual rate of increase of the delay (%) Overestimation(discrepancy) 

  5 0.44 
10 0.86 
15 1.26 
20 1.65 
25 2.02 

 
 
At the rate of 25% we find a value not far from the one found by Bongaarts and 

Feeney (2,4). This is due to the actual rate of increase in life expectancy in France, 
which is approximately a quarter of a percent each year. 

The entire process, in mathematical terms, results in a change in the time scale but 
not in the age scale, thus it is not necessary to go into further detail on the equations. 
The change in the time scale can be compared to a twisting of the life-lines on the Lexis 
diagram by a continuous deformation. In t, the deaths occurring during a small interval 
∆t can be written as: d(x-f(t))(1- ∂f(t)/ ∂t)∆t; the survivors, S(x-f(t)), and the life table 
corresponding to the forces computed by dividing the deaths by the survivors have the 
survivorship functions:  

 
S(x,t) = S(x-f(t))β(t) ,       (4) 
 

with  β(t) = (1-∂h (t)/ ∂t). 
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3. Decreasing mortality as a change in the causes of death  

One can consider evolution by processes other than delays and advances of events in 
order to analyze more precisely how the mortality process works. When we compare 
the distribution of the actual causes of death, we see very significant differences in 
comparison to the past (for example, the oldest table published in 1661 by Petty and 
Graunt in « Natural Observations... »). Some causes, such as smallpox, have 
disappeared or have become negligible,  (measles, infectious diseases and appendicitis 
are among these). This is the true process by which mortality diminishes. There are two 
reasons why this historical process can not be simulated with small delays added to the 
life of every individual in the population. Firstly, only those who contracted the fatal 
illness (before they could be cured) are affected (i.e. not everybody is affected), and 
secondly, after being cured, the delay or added expectation of life is quite large and 
does not receive a definite value. Let us start with a very simple situation: At time t=0, 
a successful treatment for a certain cause of death is discovered and applied to every 
patient who is consequently saved from death. We assume, as is common in the 
computations of removed causes of mortality, that the individuals thus saved do not 
suffer the after-effects of the treatment, and they can enjoy the same mortality pattern as 
all other individuals of the same age who are not affected. This means, that since the 
first instant t>0, all individuals are dying, following the law of mortality where all other 
causes are unchanged and one particular cause is removed. At any time after t=0, the 
forces of mortality and the expectations of life are constant and correspond to the new 
life table, which is the longitudinal table if no other change occurs. In contrast to the 
results obtained by Bongaarts and Feeney when they introduce a delay, no temporary 
large increase in life expectancy is observed. No discrepancy arises between cross-
sectional and longitudinal indexes and no correction is needed. This result requires 
more detailed explanations and a mathematical proof. 
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4. Removing one cause of death: deeper insights  

The method of suppressing causes of death leads to a delay in death, but there are 
different forms of delay. In the case postulated by Bongaarts and Feeney (we will call it 
the delay method or model), the delay applies to all individuals and is independent of 
age. As to the suppressed cause of death (we will call it the removal method or model), 
the delay affects only those struck by the particular cause, and this depends strongly on 
age. More precisely, let (S, µ, D), (S1, µ1, D1), (S2, µ2, D2), respectively, be the life table 
(survivors, forces of mortality, deaths), first before the change, second for the specified 
cause, and third after the removal of this cause. This results in two very simple 
relationships: 

 
µ1(x) + µ2(x) = µ(x  (5a)  and S(x)=S1(x) S2(x).    (5b) 
 
Let us describe in greater detail the different stages of the decline in mortality: 

before t=0, the population follows the first mortality pattern (S, µ, D). Since time t=0, 
amongst those µ(x)S(x) who are assumed to die, µ2(x)dx do so and µ1(x)dx are saved 
and follow from this point the second pattern of mortality (S2, µ2, D2). Therefore they 
have a probability density of k(u)= D2(x+u)/S2(x) of dying after delay u. This is in line 
with the hypothesis of independence of the causes of mortality: After being cured, the 
probability of dying from another cause is the same as in the general population of the 
same age. From these remarks, we can compute the deaths d(x,t) at age x and time t by 
taking in t at age x the endpoint of all delays (including 0): 

 

d(x,t) = 
0

t

∫   S(x-u)µ1(x) D2(x)/S2(x-u) du  +  µ2(x)S(x).    (6) 

 
Similarly, the survivors s(x,t) are those who have survived any cause of mortality 

at age x and S(x) and those who were hit at a former time t-u by the cause of death that 
was removed and whose delays are superior to u: 

 

s(x,t) = S(x) + 
0

t

∫  S(x-u)µ1(x-u)S2(x)/S2(x-u)du.    (7) 

 
When dividing the deaths by the survivors, one can compute the forces of 

mortality q(x,t) = d(x,t) / s(x,t).  As demonstrated in Appendix B, after some 
mathematical manipulations we arrive at:  q(x,t) = µ2 (x). The forces are independent of 
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t at any time after t=0 and they are the same as those of the actual longitudinal pattern 
of mortality after t=0.  

A sudden change in mortality preceded and followed by complete stability is not 
very realistic. The method of introducing a sudden change was used here, and was in 
the paper by Bongaarts and Feeney as well, to introduce a change of delays through 
time and not only at a fixed point in time. The same generalization as in delay can be 
made for the removal of a cause of death. We can assume that this removal is made at 
intervals T/n in n stages, each accounting for 1/n of the force of mortality µ1 (x). 
Because the life table corresponding to the removal of each successive change is 
immediately followed by the population, the result, applicable separately for each 
elementary stage, holds for the whole change and can be made continuous by increasing 
n to infinity. For the same reason, the change does not need to be regular but can follow 
any time path. It is not even necessary to use the same age pattern; the only requirement 
is to have the table at the end without the removed cause or causes (S2, µ2, D2). 

 
 

5. A numerical example of the two methods  

The preceding results are abstract ones. Let us be more concrete in comparing the two 
methods using the same example. We assume the law of mortality defined over five 
years with survivorship function (100, 60, 30, 10, 0, 0) at age (0, 1, 2, 3, 4, 5). First, let 
us assume that a delay by half a year is gained by some mean since the beginning of the 
process at t=0 (Bongaarts and Feeney call this mean a « survival pill ») that 
automatically expands life by six months. If the deaths are spread regularly over each 
age, then we observe at each age only half of the deaths of the preceding years during 
the year following t=0 (Table 2). Thereafter, the deaths will be as numerous as before 
but shifted to half a year later (under the assumption that the newborns also take the 
miracle pill). Table 2 can be extended indefinitely, but this is not necessary because the 
numerical values are stabilized as of the second year after the change in the number of 
deaths, as well as for the survivors and quotients. The total number of deaths is the 
same as the preceding year 0, but the expectation of life is extended by half a year.  

Now, let us take the same life table as in Table 3, before (year -1) and after (year 
1) the change, but suppose it results from a sudden change of pattern due to the removal 
of a cause of death at time t=0. For that cause, the quotients of mortality Q1 are such 
that 

 
1-Q2(x) = (1-Q1(x)) (1-Q(x)),  
 

which gives the following tables:  



Le Bras: Mortality tempo versus removal of causes of mortality  

622  http://www.demographic-research.org 

Table 2:  Quotients of the life table before and after the removal of  
   one cause 

 
Age x Final table Q2(x) Mortality cause removed: Q1(x) Initial table Q(x) 

0-1 0.2 0.25 0.4 
1-2 0.44 0.11 0.5 
2-3 0.56 0.25 0.67 
3-4 0.75 1.0 1.0 
4-5 1.0   

 
 
Each year following t=0, the survivors of the initial table are distributed in three 

groups: those who die from a cause of death in the final table, those who are facing 
death but survive, and those who will survive anyway. The second group dies according 
to the figures in the final table. For example, amongst the 40 foreseen deaths of the 
initial table at t=0, 20 die as given by the quotient of the final table, and the other 20 
follow the pattern of the second table.  Similarly, of the 30 individuals of the initial 
table who are prone to die within one or two years, 26.25 (30 x 0.44) die and 3.75 
survive according to the figures in the final table. The survival times of those cured 
from the removed cause of death are distributed by duration, as shown in Table 4. 

 
 

Table 3:  An example of delay in mortality   
 

 Survivors and deaths  Quotients 
Time -1 

Sur 
 
D 

0 
Sur 

 
D 

1 
Sur 

 
D 

2 
Sur 

 
D 

3 
Sur 

 
D 

-1-0 0-1 1-2 2-3 

Age                
0 100  100  100  100  100      
  40  20  20  20  20 0.4 0.2 0.2 0.2 
1 60  60  80  80  80      
  30  15  35  35  35 0.5 0.25 0.44 0.44 
2 30  30  45  45  45      
  20  10  25  25  25 0.67 0.33 0.56 0.56 
3 10  10  20  20  20      
  10  5  15  15  15 1.0 0.5 0.75 0.75 
4 0  0  5  5  5      
  0  0  5  5  5   1.0 1.0 
Deaths 100  50  100  100  100      
(Total)               
Life ex-
pectancy 

1.5  2.5  2.0  2.0  2.0      
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Table 4:  Distribution of durations after the given cause of death  
   was suppressed  

 
 Survival duration (years)  

Age when the given  
cause is cured 

1 2 3 4 
Total surviving at  

the beginning 

0-1 8.75 6.25 3.75 1.25 20 
1-2 2.08 1.25 0.42  3.75 
2-3 2.50 0.83   3.33 
3-4 2.5    2.5 

 
 
With this distribution, it is now possible to establish, at each successive year, the 

balance of deaths in the same way as in the preceding case of a given delay. We arrive 
at a similar table, in which the number of deaths is computed according to the delays 
ending in t at age x. For example, the 11.25 (7.5 + 2.5 + 1.25) dead during period 3-4 at 
age 3 in completed years come from 7.5 with delay 0 because they died from a cause 
other than the suppressed one, 2.5 with delay 1 from the preceding year and 1.25 with 
delay 2 coming from the preceding two years (see Table 4). 

We see in Table 5 that the quotients and expectations of life reach directly and 
immediately their value in the second or final table where the given cause is removed. 
However, deaths and survivors rejoin the structure of the final table only after four 
periods, which is the length of the greatest delay. The overall structure displayed in 
Table 5 is more general than that of Table 2. The quotients of the given cause can take 
any value smaller than the quotient of the initial life table at the same age (the only 
restriction.). No proportionality hypothesis or rule is further required.  
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Table 5:  An example of the removal of a mortality cause   
 
 

 Survivors and deaths 
Time -1 

Sur 
 
D 

1 
Sur 

 
D 

2 
Sur 

 
D 

3 
Sur 

 
D 

4 
Sur 

 
D 

5 
Sur 

 
D 

Age              
0 100  100  100  100  100  100  
  40  20  20  20  20  20 
1 60  60  80  80  80  80  
  30  26.25  35  35  35  35 
2 30  30  33.75  45  45  45  
  20  16.67  18.75  25  25  25 
3 10  10  13.33  20  20  20  
  10  7.5  10  11.25  15  15 
4 0  0  2.5  3.33  5  5  
  0  0  2.5  3.33  3.755  5 
Deaths 
(Total) 

 100  70.42  86.25   94.58  98.75  100 

Life expectancy  1.5  2.0  2.0  2.0  2.0  2.0 

 
 

 Quotients 
Time -1-0 0-1 1-2 2-3 
Age      
0     
 0.4 0.2 0.2 0.2 
1     
 0.5 0.25 0.44 0.44 
2     
 0.67 0.33 0.56 0.56 
3     
 1.0 0.5 0.75 0.75 
4     
   1.0 1.0 
Deaths (Total)     
Life expectancy     
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6. Which life table is the reference table?  

Bongaarts and Feeney contrast three ways of computing life expectancy: firstly, 
summing the survivors over the life course, secondly, taking the mean age at death in 
the standardized distribution of deaths, and thirdly, starting with the forces or quotients 
to construct the life table. In the real world, the last method is by far the most common 
one applied by statistical offices. The distributions of survivors or deaths are seldomly 
handled directly since they reflect generational history and are distorted by migrations. 
A cross-sectional life table is not intended to represent a remote past but to capture the 
actual trend. A usual justification of the cross-sectional life table, the fictitious 
generation, is that it can be observed in a generation for which all the observed data at 
time t are frozen and reproduced in the future during the time span of a generation. 

This pseudo-empirical definition is not very useful. It seems better to freeze the 
causes that command the data rather than the data itself. With this causal approach, a 
good cross-sectional life table at time t is one that would be observed in a generation if 
suddenly all the parameters that configurate mortality were instantaneously 
immobilized at time t, including of course the advances and delays or the removal of 
some causes of mortality. In the preceding example where the two ways of change have 
been explored, the life table of reference is called the final life table. Its survivor and 
death functions emerged rapidly according to the delay method and progressively when 
a cause of mortality had been removed. However, with the removal method, the final 
table was immediately given by its quotients, in contrast to the delay method where 
fluctuations took place until the fixed delay was achieved. The issue, therefore, is not 
whether to choose between an estimation from the quotients, the survivors, or the 
deaths, but rather which life table constructed in the usual manner from the quotients 
provides an exact estimate of the longitudinal table corresponding to the « frozen » 
causes. Herein lies the large discrepancy between the model of delay and the model of 
removal. 

What is meant by « frozen » causes is clearer than what is meant by  “fictitious” 
generation, but the former still needs to be explained in greater detail.  To a certain 
extent, the assumed behavior depends on the model adopted. A difference can be noted 
between the two models of a single change in t=0. In the case of removal, there is no 
direct transformation of the cross-sectional data to longitudinal data, but a continuation 
of the process until the last delay is completed and all the distributions stabilized, as 
shown in Table 5.  In the delay process, the stabilization is more rapid, as shown 
occurring in the second period in Table 2. However, in each case, the longitudinal life-
table does not exist on an empirical basis during the stabilization process. It is only 
defined as a process that converges more or less rapidly according to the model 
selected. 
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Continuous change of causes through time is more problematic. In the removal 
model, the quotients of the longitudinal « frozen » table are immediately reached, 
owing to instantaneous adjustment. But with a change in delay f(t) through time t, the 
question arises: What is the behavior to be frozen at time t? Is it the behavior 
corresponding to the last (observed) delay ending just at t which began at t-f(t) and 
consequently, the behavior in t-f(t), or the behavior corresponding to the delay (non-
observed) starting just in t ? The second solution is a more rational one, but the length 
of the delay beginning in t is unknown and will only be determined when it ends, by the 
mean age at the standardized deaths. The difference is not small, as the following 
example illustrates: if f(t) = αt  (linear case), with t being the end point of the delay (see 
Appendix C), the delay beginning in t amounts to αt /(1-α). The difference d to delay 
αt ending in t is quite high: d = αt /(1-α) -αt  = α2t /(1-α). If the rate of increase is 25% 
and t = 30 (as in Europe), d = 2.5 years, and amusingly, equal to the overestimation 
computed by Bongaarts and Feeney. That is, there are no definite « frozen » causes in 
the delay model. Furthermore, there is naturally no empirical reference that can be used 
for building the hypothetical life-table during the process. If one needs to design a 
correction procedure, the reference must be defined prior to the correction, but this is 
not feasible in any circumstance. 

 
 

7. Unifying the two views: the repartition function of the delays by 
age and duration  

The only difference between the two methods rests in the way by which the delays are 
postulated in formulating the two methods. We propose a more general model that 
covers the two instances considered so far. By the same token, we will demonstrate that 
they have strong and unique properties. Let us call λ(x-u,u) the density proportion of 
deaths foreseen to occur at age x-u and delayed at time t-u until age u is reached at time 
t, and let θ(x) be the proportion of deaths at age x non-delayed. By counting all delays 
which end in t at age x , we arrive at the number of deaths2: 

 

d(x,t) = 
0

t

∫ S(x-u)λ(x-u,u)du + θ(x)S(x).       (8) 

 

                                                        
2 The formulae could be made simpler by working with Lebesgue measures instead of Riemann Integrals. All the terms would be put under the 

integral sign, θ (x) becoming  λ (x,0) δ(x). However, we prefer to keep contact with the real process, distinguishing those who enjoy a delay from 

those who die directly. 
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Using the same procedure, we recount the survivors as all those who have either 
never directly been threatened by death, or, if threatened, are cured and alive: 

 

s(x,t) = S(x) + 
0

t

∫
 

 S(x-u) (
u

ω

∫  λ(x-u,v)dv ) du.   (9) 

 
The two methods analyzed can be rewritten as follows: 

 
for the removal method: λ(x,v) =  (µ(x) - θ(x) ) D2(x+v) / S2(x). 
    θ(x) =  µ2(x). 
 
for the delay method:            λ(x,v) = δ(v-T)µ(x), 
 
where δ stands for the Dirac function and  T for the fixed delay, θ(x) = 0. 

Both methods have special properties. The removal method is the only 
decomposable method for which the forces of mortality by age adjust instantaneously to 
the final or longitudinal quotients of the table without the removed cause. The delay 
method assumes a fixed and common delay f(t) for every member of the population at 
any time t. 

It is not a difficult but rather a tedious task to demonstrate the existence of these 
two properties. They are developed in Appendixes B and C. The first property is a good 
justification for using cross-sectional life expectancy as an indicator of longitudinal 
tendencies. It reveals, again, a large difference to fertility, where the total fertility rate is 
an inappropriate indicator of the evolution of the total number of children ever born. 

The delay method is quite restrictive. Appendix C shows that it implies a common 
duration in the delay for all individuals. At time t-f(t), each death is delayed by f(t) 
exactly. This is not evident at first sight because the method starts from the 
proportionality rule. Nevertheless, it is a necessary consequence of the assumptions 
made. We can illustrate this with a simple model. In a single delay in t=0, assume that 
delay T applies only to a proportion p of the foreseen deaths at each age instead of 
being universal. The other 1-p deaths are in time according to the initial life-table. For 
t<T, the formulae (I) and (II) take the form: 

 
d(x,t) = (1-p)µ(x) S(x)  = (1-p)D(x), 
s(x,t) = S(x) + p(S(x-t) - S(x)) = (1-p)S(x) + pS(x-t). 
 

The resulting force of mortality is:  q(x,t) = µ(x)/ (1 + pS(x-t)/((1-p)S(x)). 
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We see in the formula that the proportionality rule no longer exists, the 
denominator varying with age x. When delay T is over, the force of mortality becomes: 

 
q(x,t) = ((1-p)D(x) + pD(x-T)) / ((1-p)S(x) + pS(x-T)). 
 
The shift in the survivorship function is no longer constant, and depends on age 

because of the varying slope of S(x). The proportionality rule no longer applies. These 
remarks hold when the delay is not the same for all individuals but follows a probability 
distribution. A discussion of this issue is provided in Appendix C. The delay method is, 
therefore, restrictive. It supposes that at time t - f(t) every death without exception is 
postponed by a fixed duration f(t). From an empirical view, this seems unlikely. Below, 
we discuss the features and the likelihood of each method, delays or removal of the 
causes of death. 

 
 

8. Which is the best model? A discussion of the two methods  

The two models are now embedded in a common pattern of delays depending on age 
and time, yet the difference in the results is, so far, not suppressed. The delay model 
reveals an overestimation or an underestimation of life expectancy according to an 
increase or decrease in mortality. In the removal model, no overestimation, yet rather a 
correct estimation of the longitudinal trend, can be seen. Which method is the most 
appropriate one? Which model provides a more accurate representation of the process 
of changing mortality? The answers are found in the comparative handling of delays 
and risks. As its name indicates, the delay method moves the delays forward in time. 
The risks measured by the quotients and forces are the results of changing delays, 
which are the causal factor. The removal method, by contrast, sees the mortality change 
as a process of changing risks pertaining to certain causes. The delays are the 
consequence of changing risks through which the acting causes are channeled. 

Let us begin with the simple model of a single change at t=0. Can we make the 
assumption of a delay by a few months for each foreseen death? With very old and very 
sick people, the delay can depend on euthanasia. But most of the deaths are not 
imputable to extreme age or to severely deteriorated physical conditions. Infectious 
diseases (some of which are contracted in hospital), accidents, cancers and heart 
attacks, when cured, give a large and aleatory respite whose average is the expectation 
of life at the age of the patient. The word aleatory is important here: It is impossible to 
fix an individual delay for any individual, to assure the individual that he or she will 
stay alive for a specific time. A murder, an earthquake, or a new disease can hurt the 
individual. In fertility, the situation is different. If one wants to avoid birth during a 
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given period, one can rely on contraception and abortion in case of unwanted 
conception. The delays play a major role in fertility and nuptial processes because they 
involve the will. One can postpone the wedding day, even postpone it indefinitely, but 
one cannot do the same for the day of death, which is only partially influenced by our 
will. 

There is another difficulty with the delay model. As demonstrated, all individual 
delays f(t) ending at time t are the same. Furthermore, they are postponed only once. If 
we enter the full details of the longitudinal process of mortality into the delay model, 
when a death is foreseen at age x, then the death is postponed until age x+f(t) but at that 
age, it becomes certain. There is no second chance of delay. It means that the 
population is split into two groups; those who are subject to a known date of death and 
those whose death has never been delayed. The expectations of life differ considerably 
in the two groups. In the removal model, by contrast, this difference disappears. After 
removing the given cause, all individuals run the same risk of death at a given age x. As 
mentioned before, the delays do not matter; they are the result of the process, not its 
cause. The new or final life-table is computed by changing the overall risks at each age 
in substracting the force of mortality of the given cause from the overall force of 
mortality. In the delay model, the new life-table is computed by the mean of the added 
delays. If we take a very long term view of mortality, say, from the Cro Magnon Era 
onwards, the process of mortality in the delay model results in the sum of many small 
delays of survival, each certain and the same for all individuals. This does not concur 
with the data on mortality. In such a model, there is no way to differentiate between 
individuals and no room for chance, and if it existed, then the resulting curve of deaths 
according to age should be Gaussian. 

The removal model seems to be the more realistic one. In the long term, it depicts 
mortality as a process of removing the causes of mortality one after the other. To a 
demographer, this corresponds well with the analysis of mortality by cause and with the 
techniques of the multiple decrement life-table. In summation, mortality appears to be 
more of a multiplicative process than an additive one. One could say, nevertheless, that 
the language of delays and the language of causes of mortality are two different 
expressions of the same reality. This is not true, however. Knowing the delays T=f(t), 
we can compute the corresponding gain in risks at each age using the same notations as 
before:  

 
µ2(x) = µ(x) - µ1(x)  =  µ(x - T). 
µ1(x) = µ(x) -µ(x-T). 
 
If µ(x) follows the Gompertz law, µ(x) = Aerx, µ1(x) and µ2(x) also follow this law 

with the same exponent but with a different scale factor: 
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µ1(x)  = A e
rx (1-e-rT ), 

µ2(x)  = A e
rx (e-rT ). 

 
This property seems to be an empirical argument in favor of the delay method, 

because in the developed countries since the 1970s, the reduction of mortality has 
followed this pattern. Yet, as the preceding equations show, the same pattern can be 
generated with the removal of a cause of mortality displaying the same Gompertzian 
slope as the general mortality. Moreover, there is a one-to-one correspondence between 
delays and risks. In general, a given profile of risk by age has no equivalent in terms of 
delay. The removal method is more general. It allows for any risk profile, with µ1(x) < 
µ(x) being the only condition, whereas the delay method imposes a specific age profile 
of the risks. 

In brief, the removal method is better suited to the process of mortality: 
 
-Life expectancy after a postponed death is likely large, and not limited to a few 

months. However, if the delay is long, it provides a long duration with no risk of 
mortality. This is an unrealistic assumption, considering the nature of mortality. 

-The delay is the same at any age in the delay method, yet it varies according to the 
expectation of life at age x in the removal method. This variation seems more realistic.  

-The reference to the initial and final life tables is straightforward in the removal 
model, but not well defined during the course of the delay in the delay model. 

-In the removal model, there is always one single population with every individual 
at age x who is threatened at any time by the same force of mortality, either µ(x) or 
µ2(x). In the delay model, some individuals experiencing delay are exposed to high risks 
and are  near death, whereas the other individuals remain exposed to the usual risks.  

-The removal model is coherent with the analysis of mortality in terms of multiple 
decrements. 

 
Until now, a comparison was drawn only in the simple case of a unique and 

sudden change in t=0. Does this result hold when mortality varies continuously? In 
these circumstances, a comparison between the two methods shows further advantage 
of the removal method. All preceding remarks still apply. One additional remark 
sharpens the difference, where the delay method raises the problem of reference life 
tables. One cannot take a reference table that was computed in a former epoch and that 
can embody bias, as found by Bongaarts and Feeney, and counterbalance its effect. 
What former life table brings the guarantee of having been computed under stationary 
conditions?  As discussed, the longitudinal reference life table cannot be well defined in 
this respect. It cannot be computed at t, that since t-f(t) the delays were held constant, 
and the delays beginning after t-f(t) are not known because they can be determined only 
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when they come to their end. The removal method does not raise such problems. At 
each point in time, the observed life table is the reference table.  

It does not follow from the discussion that any change of mortality pertains to the 
removal method. Only the long term changes or the trend in mortality obey such a 
model. In the short term, many causes of fluctuation are at work, suffice it to say 
seasonal variations related to atmospheric conditions, cold or hot weather, and influenza 
more severe than usual. They can delay or advance some deaths, but their effect is 
negligible on the average at a medium term range. The following statement could stem 
from Solomon: For the short term, take the delay method and for the long term, take the 
removal method. For short term fluctuations, the proportionality rule which is crucial 
for the working of the delay method, is not observed. Influenza, hot or cold weather, 
humidity or dry weather conditions, have a negative effect on very young and very old 
persons. A good example was provided by the heat wave that hit France in August 
2003. The rates of mortality following the wave and computed for the age groups are 
reported in Table 6. Here, we can see how late and accelerated the increase of the 
probability of death was, and how far we are from proportionality when we compare 
these rates to the overall quotients at the same ages provided by the most recent French 
tables (2001).  

The best way to tackle seasonal accidents remains the multiple decrement life 
table. It allows computing the decrease of life expectancy. The interest focuses on µ1(x) 
and not on µ2(x). This is because it is clear that the change is not a permanent but an 
accidental one. In any case, the removal method should be preferred to the delay 
method and no correction is needed. 

 
Table 6:  Rates of death caused by the heat wave (France, August 2003) 

  compared to the general quotients of mortality 
 

Age group 
Heat wave mortality rates 

(for one million) 
Overall quotients 

(for one thousand) 

 Men Women Men Women 

60-64 115 050 65 27 
65-69 244 138 99 41 
70-74 396 281 149 69 
75-79 786 673 226 122 
80-84 1.901 1.923 356 227 
85-89 2.759 2.821 528 400 
90-94 5.702 6.696 712 620 
95 and + 9.900 12.431 809 780 
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Appendixes  

A. Deaths and survivors of age x in t after the removal of a mortality cause in t= 0 

The aim of the computation is to show that the force of mortality in t and x is 
independent of t and equal to its final value µ2(x). We have seen that the distribution of 
delays u in t=0 at age x was u=0 in µ2(x) cases and f(u) = D2(x+u)/S2(x) in µ1(x) cases. 
Conversely, the deaths at age x in t can be computed by adding up all the delays 
terminating in t at age x: 

 

d(x,t) = 
0

t

∫ S(x-u) µ1(x-u)D2(x)/S2(x-u)du   +   µ2(x)S(x)   

 =  D2(x) 
0

t

∫  µ1(x-u)S1(x-u)du     +    D2(x)S(x)/S2(x), 

 
because  S(x) =  S1(x) S2(x) et µ1(x-u) = - S1

’ (x-u)/S1(x-u). 
 

This results in:  D2(x) = D2(x) 
0

t

∫  -S1
’(x-u)du      + D2(x)S1(x) 

 
 = D2(x) (S1(x-t) -S1(x) ) +   D2(x)S1(x)  = D2(x)S1(x-t) if t < x  
 
and = D2(x) (1 -S1(x) ) +   D2(x)S1(x)  = D2(x)     if t > x. 
 
We get the survivors s(x,t) at age x in t with the same kind of computation: 
 

s(x,t) = S(x) + 
0

t

∫  S(x-u) )µ1(x-u)S2(x)/S2(x-u)  du, 

 =  S(x) + 
0

t

∫  S1(x-u) µ1(x-u)S2(x) du, 

 =  S(x) + 
0

t

∫
 

 S1(x-u)µ1(x-u) S2(x) du, 

 = S(x) + S2(x) 
0

t

∫  -S1
’(x-u)du, 

 = S(x)+ S2(x) (S1(x-t) -S1(x) ) = S2(x) S1(x-t)   if  t < x, 
 
and = S(x)+ S2(x) (1 -S1(x) ) = S2(x)                       if  t > x.  
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The mortality force q(x,t) = d(x,t)/s(x,t) follows: 
 
q(x,t) = D2(x) S1(x-t) / S2(x) S1(x-t) = D2(x) / S2(x) = µ2(x)    if t < x, 
and = D2(x) / S2(x) = µ2(x)     if t > x. 
 
Therefore, for any t>0, the force of mortality at age x is the force of mortality µ2(x) 

of the final life table (the initial table from which the given cause was removed under 
the assumption of independence). 

 
 
 

B. Demonstrating the strong properties of the two methods  

Let (S,D,µ) be the life table of reference, d(x,t) the density of deaths at age x in t >0, 
s(x,t) the survivors and  λ(x-u,u) the probability for a death foreseen in t-u at age x-u to 
be delayed until age t (the delay is u). In summing all deaths in t at age x by considering 
the end of the delays and those who experience no delay, we get the same results as in 
Appendix A:  

 

d(x,t) = 
0

t

∫  S(x-u) λ(x-u,u)du  + θ(x)S(x),    (1) 

s(x,t) = S(x) + 
0

t

∫
 

 S(x-u) (
u

ω

∫  λ(x-u,v)dv ) du.   (2) 

 
A third relation results from the fact that the sum of the probability of the different 

situations for the foreseen death is the overall force of mortality  µ (x): 
 

0

ω

∫   λ(x+u,u)du  +  θ(x)  = µ (x).     (3) 

 
As examples: 
 
-λ(x,v) =  ( µ(x) - θ(x) )D2(x+v) / S2(x),  
when a cause of mortality is removed ((S2 , D2 , µ2 ) denotes the final life table). 
 
-λ(x,v) =   µ(x)f(v) 
 

when the delays v do not depend on age and have a probability distribution f(v). 
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We will demonstrate that the removal method is the only decomposable method 
that keeps the force of mortality unchanged after t=0 and in this case gives    θ(x) = 
µ2(x). 

Let use define: ϕ(x) = d(x,t) / s(x,t). 
The derivative in t of the left part of this equation needs to be 0 for any t>0. Using the 
formulae (I) and (II), this can be written as: 

 
∂d(x,t)/ ∂t.s(x,t) = d(x,t)∂s(x,t)/ ∂t. 
 

S(x-t) λ(x-t,t)s(x,t) = d(x,t)S(t-x) (
t

ω

∫  λ(x-t,v)dv), 

 

so:     λ(x-t,t)s(x,t) = d(x,t) (
t

ω

∫  λ(x-t,v)dv), 

and:  λ(x-t,t) = ϕ(x) (
t

ω

∫  λ(x-t,v)dv) .     (4) 

 
If we put the expression  λ(x-t,t) in the formula (I) giving the deaths, we get: 
 

d(x,t) =  ϕ(x) ∫0
t

  S(x-u) (
u

ω

∫  λ(x-u,v)dv )du  + θ(x)S(x) , 

 
 =  ϕ(x) (S(x,t) – S(x) ) + θ(x)S(x) 

according to  (2) 
 
 = d(x,t) + S(x) (θ(x) - ϕ(x) ), 

thus: 
 
ϕ(x)  =  θ(x), 

from what: 
 

λ(x-t,t) = θ(x) (
t

ω

∫  λ(x-t,v)dv ).     (4b) 

 
Now take the decomposability assumption for λ(x-t,t):  

 
λ(x-t,t) = A(x-t)B(x). 



Le Bras: Mortality tempo versus removal of causes of mortality  

636  http://www.demographic-research.org 

 
Putting it in (4b), it becomes: 

 

A(x-t)B(x) =  θ(x) 
t

ω

∫  A(x-t)B(x+v-t)dv. 

 

B(x) =  θ(x) 
t

ω

∫  B(x+v-t)dv. 

 

B(x)    =  θ(x) 
x

ω

∫  B(u)du. 

 
This formula is that of a life table, and more precisely, the final life table (S2, µ2, 

D2), already encountered when looking at the removal of a cause of mortality. 
Effectively: 

 

B(x) = D2(x); S2(x) =
x

ω

∫  B(u)du = 
x

ω

∫  B2(u)du;          µ2(x) =  θ(x). 

 
There remains to determine the possible values for A(x-t). To that end, we need the 

equation (3): 
 

0

ω

∫  λ(x+u,u)du  +  θ(x)  = µ(x), 

which becomes: 
 

0

ω

∫   D2(x+u)A(x)du  +  µ2(x) = µ(x).  

 

A(x) 
x

ω

∫   D2(v)dv   =    µ(x) - µ2(x).  

 
A(x)S2(x) =   µ(x) - µ2(x), 
 
A(x) =   (µ(x) - µ2(x)) / S2(x) . 
 

Knowing that  µ1(x) = µ(x) - µ2(x): A(x) =    µ1(x) / S2(x), 
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we can now give the expression  λ(x-t,t): 
 
λ(x-t,t) = A(x-t)B(x),  
 
 = D2 (x)µ1 (x-t) / S2(x-t). 
 
This is exactly the expression obtained when a cause of mortality described by the 

table (S1, µ1, D1) is removed in t=0. The method of removal, therefore, is the only 
decomposable model for which the forces of mortality at any age x and any time t >0 
catch up with their value in the actual longitudinal life table and does not depend on the 
time passed since the removal of the cause of mortality. 

When the delays are independent of age, λ(x-t,t) can be written as: 
 
λ(x-t,t) = µ(x-t)g(t). 
 
Putting this expression in the equation (4b) for the equality of the cross-sectional 

and longitudinal life tables after the change in t=0, we get: 
 

µ(x-t)g(t)  =     ϕ(x) (
t

ω

∫  µ(x-t)g(v)dv), 

 

g(t)  = ϕ(x) 
t

ω

∫  g(v)  dv. 

 
It imposes ϕ(x) = k constant and  g(t) = Ce –k.t.    

Substituting in equations (I) and (II) for deaths d(x,t) and the survivors s(x,t), we 
arrive at a contradiction for their ratio that depends on t: 

 
d(x,t)/s(x,t)  = k(s(x,t)-S(x))/s(x,t) . 
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C. Fixed and variable delays  

First, let us go back to the evaluation of deaths and forces of mortality from the value of 
the delays g(θ) taken at θ, the time of their beginning (and not f(t) taken at their end). 
Let θ be the time at the departure of the delay that ends at t. We get: t = θ + g(θ) = θ + 
f(t). Let us take a small interval  ∆θ  after  θ. The delay beginning in  θ + ∆θ will end in 
t1= θ + ∆θ + g(θ+ ∆θ) which is equivalent to θ + ∆θ + g(θ ) + g’(θ )∆θ. The interval 
∆t between t and t1 is as follows: 

 
∆t =  (1 + g’(θ))∆θ. 
 
At the end time in t, the density of delayed deaths is therefore at the ratio 1/(1 + 

g’(θ )) with the density of the deaths delayed at the departure between  θ and θ + ∆θ. 
Consider now the increase of the delay at the point of arrival of the delay in t: between t 
and t1 , the delay f(t) grows by g’(θ )∆θ. Its derivative is: 

 
 f’(t) = g’(θ)∆θ / ∆t  =  g’(θ)∆θ / (1 + g’(θ));        ∆θ = g’(θ)/ (1 + g’(θ)). 
 

This gives the formula for the deaths in case of delay: 
 
d(x,t) = (1 – f’(t))D(x-f(t)) = 1 / (1 + g’(θ))D(x-g(θ)), 
 

because   1 – f’(t) = 1- g’(θ)/ (1 + g’(θ)) = 1 / (1 + g’(θ)). 
 
It is necessary to have the formula at the departure of the delay and not only at its 

arrival if we want to write the case where delay u varies according to the law of 
probability k(u)du. Let us demonstrate in these circumstances that the proportionality 
rule no longer holds. In consequence, the delay method necessarily rests on the 
particular hypothesis of a fixed delay. There is at a time t only one value for the delay 
for any individual threatened by death. We can begin the demonstration with the simple 
case of a sudden and unique change in t=0. The deaths at age x and time t will be: 

 

d(x, t) = 
Ξ

∞

∫  k(u)D(x-u)du,      (5) 

 
and the survivors s(x, t):  
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s(x, t) = S(x) + 
0

t

∫  G(u)D(x-u)du,     (6) 

 
where: 

 

K(u) = 
u

ω

∫  k(v)dv.       (7) 

 
If the proportionality property holds, it is necessary that: 

 
d(x,t) = p(t)D(x-l(t)).       (8) 
 
Integrating in the whole age range the two formulae of the deaths (6) and (8I) leads 

to: 
 

0

t

∫  k(u)du 
−∞

ω

∫  D(x-u)dx = p(t) 
−∞

ω

∫  D(x-l(t))dx , 

 
according to (7): 

 
1-K(t) = p(t). 
 

Under these conditions, we would get: 
 

D(x-l(t)) = 
0

t

∫
t
 (k(u)/ (1-K(t)))D(x-u)du. 

 
With (k(u)/ (1-K(t))) being a probability distribution on the interval of time { 0,t} , 

the distribution of deaths should be at each age a weighted average of itself with a 
constant shift (playing the role of the delay). This is impossible a priori and a posteriori 
because the distributions of delays u, ( k(u)), and of deaths x, (D(x)), have no 
relationship. 

If the proportionality property is lost in the case of a unique and sudden change, 
when a fixed duration of the delay is replaced by a distribution of durations, it is also 
the case, a fortiori, when the change is continuous through time. In making the 
assumption of proportionality as a way of defining delays, Bongaarts and Feeney are 
postulating a very strong structure and a questionable one, because it means that all 
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those who had to die in t-f(t) in absence of delay would have the same duration f(t) of 
the delay. 

 
 
 


