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Abstract 

Analysis of age-specific trajectories of cancer incidence rates for all sites combined 
(data source: International Agency for Research on Cancer) reveals a leveling-off and 
decline of the rates at old ages in different countries and time periods. We apply a non-
linear age-period-cohort model (James and Segal 1982) to obtain declining cancer 
incidence rates at old ages. The age effects are represented by a power function of age 
in accordance with a multistage model of carcinogenesis (Armitage and Doll 1954). 
Applications to cancer incidence in England and Wales, Japan (Miyagi prefecture) and 
the USA (New York State and San Francisco) illustrate the approach. Further topics of 
research are discussed. 
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1. Introduction 

In many countries and time periods, the age-specific trajectories of the cancer incidence 
rate for all sites combined reveal a deceleration or decline at old ages (Fig. 1, 2; source: 
International Agency for Research on Cancer (IARC), IARC 1965-1997). Most 
researchers who studied relationships between age and cancer risks focused mainly on 
an increase in cancer risks with age (see e.g., Peto et al. 1975, Rainsford et al. 1985, 
Volpe and Dix 1986, Dix 1989, Krtolica and Campisi 2002). They ignored other typical 
features of cancer rate patterns, such as deceleration and decline at old ages. A reason 
might be that they have used data on age-specific cancer mortality rather than incidence 
data. Typical data on cancer mortality are limited to age 75, thus not allowing 
observations to be made on the decline in cancer mortality rates observed at oldest old 
ages (see e.g., EUCAN and GLOBOCAN databases). IARC (1965)-(1997) data on 
cancer incidence rates, by contrast, are available in 5-year age groups up to age 85 and 
above, therefore enabling us to observe the rates’ behaviors at oldest old ages. 

Vaupel and Yashin (1999) and recently Arbeev et al. (2005) discussed several 
mathematical models that address questions pertaining to the decline in human cancer 
incidence rates at oldest old ages. In search for an explanation, these models exploit the 
ideas of population heterogeneity, age-related changes and the decomposition of 
individual aging. This paper looks at the decline from a different angle and applies age-
period-cohort (APC) models with the aim to find an explanation for these observations. 

APC models have been extensively applied to different data including human 
cancer incidence rates. The applications focus mainly on the incidence rates for specific 
sites. Among some recent APC analyses of different cancers are Chirpaz et al. (2002) 
(prostate cancer), Colonna et al. (2002) (thyroid cancer), Ho et al. (2002) 
(oropharyngeal cancer), Lambert et al. (2002) (stomach cancer), Peng et al. (2002) 
(breast and colorectal cancer), Svensson et al. (2002) (colorectal cancer), Tarone and 
Chu (2002) (breast cancer), Liu et al. (2003) (non-Hodgkin’s lymphoma), McGlynn et 
al. (2003) (testicular germ cell tumors), Strickler et al. (2003) (mesothelioma). Virtually 
all “popular” cancer sites are analyzed by means of APC modeling. This allows one to 
draw valuable conclusions on the impact of various factors influencing the observed 
trends in the cancer incidence of specific sites that can be attributed to age, time 
periods, and birth cohorts. Dinse et al. (1999) examined cancer incidences in the United 
States (SEER data, Ries et al. 1997). 
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Figure 1: Female cancer incidence rates for all sites combined 

(A) – England and Wales 

 

(B) – Japan (Miyagi prefecture) 
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(C) – USA (New York State) 

 
 

(D) – USA (San Francisco, whites) 

 
data source: IARC 1965-1997 
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Figure 2: Male cancer incidence rates for all sites combined  

(A) – England and Wales 

 

(B) – Japan (Miyagi prefecture) 
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(C) – USA (New York State) 

 
 

(D) – USA (San Francisco, whites) 

 
data source: IARC 1965-1997 
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They performed a combined analysis in four groups: all cancers combined, a group of 
cancers related to smoking, cancers whose detection rates have been rising due in large 
part because of recent increases in screening, and all cancers except those in the 
smoking and screening categories. The incidence rate for all sites combined is a mixture 
of site-specific rates. However, incidence patterns for all cancers considered together 
permit a general crude assessment of trends in the cancer-induced demand for health 
care (Dinse et al. 1999). APC modeling can be a useful tool to gain a deeper 
understanding of these trends as well as predict future disease-related burdens for health 
care systems.  

This paper is organized as follows. Section 2 describes the human cancer incidence 
data used in our APC analyses. Section 3 presents the respective APC models and 
describes the results of applications to the cancer incidence data. The last section 
discusses the results and some possible further investigations. 

 
 

2. Data 

We apply APC models to data on human cancer incidence rates in different countries 
and time periods. The data are provided by the International Agency for Research on 
Cancer (IARC) in seven volumes (IARC 1965 - 1997). Each volume covers a time 
period of several years (usually three to five) for each country (or province and/or 
ethnic group) under study. The periods vary for different countries. The volumes each 
provide the female and male average annual cancer incidence per 100,000 over the 
corresponding time period for the specific country (province and/or ethnic group) in 5-
year age groups up to 85 and above (for some countries, the first group, 0-4, is 
separated into two groups: 0 and 1-4). The data are provided for separate sites and for 
all sites combined. Not all countries are presented in each volume. Only the countries 
presented in several volumes thus are suitable for our analyses. Among these, we 
selected England and Wales, Japan (Miyagi prefecture), and the USA (New York State 
and San Francisco), representing three continents and different ethnic groups.  

 
 

3. Age-period-cohort models applied to human cancer incidence 
rates 

Traditional age-period-cohort models assume that the logarithm of the expected rate is a 
sum of three components representing the effects of age groups, time periods, and birth 
cohorts. Here, non-identifiability of parameters due to a linear dependency among age, 
period, and cohort is a problem. One method to solve this problem is to assume that 
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there are not only linear effects, but also non-linear interactions. For instance, 
Moolgavkar et al. (1979) proposed and James and Segal (1982) extensively analyzed 
the following non-linear age-period-cohort model: 

 

,ln kijiijk γδβαµ ++=      (1) 

where ijkµ  denotes the rate in year i, i = 1,…, I, at age j = 1,…, J in the cohort k = i – j 

+ J, iα  represents additive period effects, kγ  is used for additive cohort effects, jβ  

captures age effects, and iδ  can be interpreted as period effects acting multiplicatively 

on age effects. The latter effects will be called multiplicative period effects throughout 

the paper to distinguish them from additive period effects iα . These kinds of models do 

not suffer from non-identifiability, given nonlinear age effects and non-equal iδ ’s 

(James and Segal 1982).  
Many epidemiological studies on human cancers revealed an increasing age-

specific incidence rate. Often, the rate increased as a power function of age. The first 
stochastic models for carcinogenesis were developed in the 1950s to explain these 
observations. A multistage theory of carcinogenesis was used as a biological basis. The 
biological aspects of this multistage theory can be found everywhere (see e.g., Peto 
1977). Nordling (1953) introduced the hypothesis that several mutations in a cell are 
required to transform a normal cell into a malignant one. Armitage and Doll (1954) 
presented a mathematical model based on Nordling’s hypothesis. The Armitage-Doll 
(AD) model postulates that several successive irreversible transformations of a normal 
stem cell lead to a malignant cell. It also assumes that the intensities of transitions 
between the stages (transformations) are age-independent. In most cases, the intensities 
are small, so that the approximated expression for the incidence rate originally 
suggested by Armitage and Doll (1954) can be used. It has a Weibull functional form 
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Here, m is the number of stages necessary to transform a normal stem cell into a 

malignant cell, Ns is the number of such stem cells, ( )mll ...2,1=λ  is the intensity of 

the process responsible for the lth transformation, and x is the individual’s age.  
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The AD model in the original form has been extensively used since the 1950s. 
Most applications are concerned with cancer of specific sites. Obviously, the AD model 
captures the increase of the rates with age as it was originally developed to explain such 
observations. However, some specific sites show incidence patterns that contradict the 
AD model. Moreover, it also fails to explain the decline in the overall cancer incidence 
rate at oldest old ages. The decline nevertheless can be obtained if the AD model is 

viewed within the APC context. For instance, we can fix jj xln=β  (where 

jx denotes the respective ages) in the James and Segal model (1) to obtain Armitage-

Doll’s (1954) rates with year- and cohort-dependent parameters: 
 

( ) ( ) ,exp i
jkijik xx δγαµ +=      (3) 

where parameter ( )kiika γα += exp  is proportional to the product of the number 

of susceptible stem cells and intensities of transitions between the stages (hits) 

necessary to transform a normal stem cell into a malignant cell, and 1+= iib δ  is 

interpreted as the number of these hits.  
We applied model (3) to data on cancer incidence rates in England and Wales, 

Japan (Miyagi prefecture), and the USA (New York State and San Francisco) (source: 
IARC 1965-1997). The results are shown in Table 1 and Fig. 3-8. Data on England and 
Wales fit best. A relatively unsuitable fit is observed for the other data sets (especially 
the 1960s-1970s data for Japan). However, the overall fit is fairly adequate. Naturally, 
the model can not capture the exact behavior of the entire incidence curve. The modeled 
incidence rate at age zero is zero. The model therefore can not capture the peak at early 
childhood. The age profile restricted to follow the Armitage-Doll pattern turned out to 
be not flexible enough to capture the pattern of the rates at middle ages for the Japanese 
data. However, the model can produce both leveling-off and declining rates whereas the 
original AD model can not.  
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Table 1: APC analysis of female and male cancer incidence in different 
countries: norms of differences (columns Norm) and correlation 
coefficients (column Corr) between modeled and observed 
incidence rates 

              Females          Males Country (Region, 
Race) 

Period 
Norm Corr Norm Corr 

1979-1982 43.122 1.000 77.435 1.000 

1983-1986 45.993 1.000 67.874 1.000 

England and 
Wales 

1988-1990 46.184 1.000 71.402 1.000 

1959-1960 173.568 0.992 178.290 0.998 

1962-1964 217.325 0.987 218.058 0.996 

1968-1971 121.470 0.997 167.227 0.999 

1973-1977 168.448 0.995 208.941 0.998 

1978-1981 150.589 0.996 178.700 0.999 

1983-1987 93.932 0.999 97.724 1.000 

Japan  
(Miyagi Prefecture) 

1988-1992 98.701 0.999 65.226 1.000 

1959-1961 80.480 0.999 191.681 0.999 

1969-1971 121.620 0.999 236.459 0.998 

1973-1977 102.057 0.999 199.704 1.000 

1978-1982 117.985 0.999 252.117 0.999 

USA  
(New York State) 

1983-1987 118.806 0.999 235.006 0.999 

1969-1973 55.093 1.000 152.083 1.000 

1973-1977 120.007 0.999 189.989 0.999 

1978-1982 99.367 1.000 187.081 1.000 

1983-1987 135.689 0.999 289.161 0.999 

USA  
(San Francisco, 
White) 

1988-1992 147.776 0.999 234.413 0.999 
 
source: IARC 1965-1997 

 
 



Demographic Research: Volume 12, Article 11 

http://www.demographic-research.org 283 

Figure 3: APC model (James and Segal 1982) with Armitage-Doll’s (1954) age 
effects applied to data on female cancer incidence rates in different 
countries 

(A) – England and Wales 

 

(B) – Japan (Miyagi prefecture) 
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(C) – USA (New York State); 

 
(D) – USA (San Francisco, whites) 

 
Data source: IARC (1965) – IARC (1997). 
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Figure 4: APC model (James and Segal 1982) with Armitage-Doll’s (1954) age 
effects applied to data on male cancer incidence rates in different 
countries 

(A) – England and Wales 

 

(B) – Japan (Miyagi prefecture) 
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(C) – USA (New York State) 

 

(D) – USA (San Francisco, whites) 

 

Data source: IARC (1965) – IARC (1997). 
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We see from Fig. 5-8 that estimates of parameters follow the same patterns for 
males and females in all data sets except for England and Wales: they exhibit nearly 
linear increases of additive period effects, a convex shape of cohort effects and an 

almost linear decline of iδ . There are also stable male/female differences in the 

parameters for all data sets except for England and Wales. First, it is the faster increase 
of additive period effects for males resulting in the intersection of male and female 

curves around the 1980s. Second, multiplicative period effects ( iδ ) decline faster in 

males. Third, female cohort effects almost exactly reproduce male cohort effect patterns 
but shifted upwards. All of these differences are related to the observed male/female 
differences in cancer incidence rate patterns. 

 

Figure 5: APC model (James and Segal 1982) with Armitage-Doll’s (1954) age 
effects applied to data on female and male cancer incidence rates in 
England and Wales 

(A) – additive period effects ( iα ) 
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(B) – multiplicative period effects ( iδ ) 

 
(C) – cohort effects ( kγ ) 

 
Data source: IARC (1965) – IARC (1997). 
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Figure 6: APC model (James and Segal 1982) with Armitage-Doll’s (1954) age 
effects applied to data on female and male cancer incidence rates in 
Japan (Miyagi prefecture) 

A – additive period effects ( iα ) 

 

(B) – multiplicative period effects ( iδ ) 
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(C) – cohort effects ( kγ ) 

 
Data source: IARC (1965) – IARC (1997). 

 

Figure 7: APC model (James and Segal 1982) with Armitage-Doll’s (1954) age 
effects applied to data on female and male cancer incidence rates in 
the USA (New York State) 

(A) – additive period effects ( iα ) 
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(B) – multiplicative period effects ( iδ ) 

 
(C) – cohort effects ( kγ ) 

 
Data source: IARC (1965) – IARC (1997) 
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Figure 8: APC model (James and Segal 1982) with Armitage-Doll’s (1954) age 
effects applied to data on female and male cancer incidence rates in 
the USA (San Francisco, whites) 

(A) – additive period effects ( iα ) 

 
(B) – multiplicative period effects ( iδ ) 
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(C) – cohort effects ( kγ ) 

 
Data source: IARC (1965) – IARC (1997) 

 

4. Discussion 

This paper addressed the issue of declining cancer incidence rates at old ages in an age-
period-cohort context. We considered the age-trajectory of the cancer incidence rate 
within the Armitage-Doll framework with period- and cohort-dependent parameters. 
Changes associated with period and cohort effects impose changes on age-trajectories 
of period incidence rates. Hence, the model can produce both leveling-off and declining 
rates, whereas the original AD model can not.  

In general, period and cohort effects model the influence of events associated with 
specific time points. Period effects represent the factors that affect incidence rates in 
persons of all ages at a specific time point. For instance, an improvement in diagnostics, 
an elevated exposure to external carcinogens such as pollution due to car exhausts or 
some disasters like Chernobyl catastrophe can be considered as such factors. They 
produce an increase in incidence rates at all ages during some period of time. Cohort 
effects, in turn, represent the effects that influence persons born during the same period 
of time. Cohort effects modify incidence rates of groups of such individuals diagnosed 
at different ages in different time periods. An increased susceptibility of children to 
cancer due to thalidomide that their mothers used during pregnancies (Dinse et al. 1999) 
can be an example of such effects. Such children experienced a high rate of 
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malformations and, therefore, the respective cohorts have increased incidence rates. 
Similarly, a decrease in the proportion of smoking women can produce a decrease in the 
risk of smoking-related susceptibility to diseases in young generations compared to the 
older cohorts. Despite the clear distinction between these two effects (period and 
cohort) sometimes it is difficult to attribute some event to any of them exclusively.  For 
instance, some event or process (e.g., changing dietary habits) can affect all age groups 
but have more pronounced effect on some specific age group. Therefore, the same event 
can produce both period and cohort effects.  

A specific nature of period and cohort effects may differ for different cancer sites. 
Trends in site-specific incidence rates are usually explained by a combined influence of 
such factors as improved diagnostics, an increased exposure to external carcinogens, a 
changing life style (dietary habits, behavioral changes), etc. Overall cancer rates consist 
of all site-specific rates. Therefore, the same factors manifest themselves in forming the 
shape of the overall cancer incidence rates and the overall rates are the result of a 
combined influence of these factors on the site-specific incidence rates. 

Concerning our model (3), the period and cohort effects modifying incidence rates 
over time and age are related to the internal processes in an organism that lead to cancer 
development. That is, the events that are attributed to the period or cohort effects 
modify the intensities of transitions between the stages (hits) necessary to transform a 
normal stem cell into a malignant cell either for all age groups uniformly (period 
effects) or only for persons born in the same period of time (cohort effects). The 
changing multiplicative effects may also reflect changing decomposition of site-specific 
cancers in the overall cancer over time (resulting in the variability in the average 
number of hits necessary to develop a malignant cell). Thus, the increasing patterns of 
male and female period effects (except for England and Wales that can be possibly 
related to identifiability issues, see below) imply that the influence of the factors that 
affect all ages at some time point (e.g., exposure to external carcinogens) increases over 
time. All cohort effects (except for the special case of England and Wales) have a “bell-
like” shape with a peak around the 1900-1920s. This may reflect, on the one hand, a 
relatively poor health status of cohorts born around the World War I and, on the other 
hand, the continuing decrease in susceptibility to cancer in new generations afterwards. 
This decline in the cohort effects turns to stagnation during the late 1940s and the early 
1950s in the cohorts born after the World War II (Fig. 7-8) and it continues in the 
following generations.  

The interpretation of age-period-cohort effects in non-linear models is limited 
because of various factors related mostly to the identifiability issue. The non-linear 
models often have regions of parameter values giving nearly an identical fit to the data 
(Holford 1991). This results in unstable parameter estimates. Therefore, the 
interpretation of results based on these estimates can be misleading. In case of our 
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application, small values of multiplicative period effects in the last periods in all data 
sets except for England and Wales seem implausible. Moreover, if the original (linear) 
APC model fits data adequately, the non-linear model (1) is likely to degenerate to a 
linear model. This means that the identifiability issue appears again (Clayton and 
Schifflers 1987, Tango and Kurashina 1987, Holford 1992). Some other factors should 
also be taken into account. Cohort effects associated with old ages in the earliest 
periods and young ages in the latest periods are based on few observations. Therefore 
they can be unstable. The term “cohort” is ambiguous when the model is applied to age 
and/or period groups because of overlapping cohorts for different age groups (Holford 
1991). In addition, we estimate cohort effects using only a limited range of ages for 
each cohort. Nevertheless, the cohort effects are not restricted to these age groups and 
the analysis of the data on the entire cohort would change the results.  

Several approaches have been suggested to solve the problem of non-identifiability 
in APC models (see the recent reviews by Robertson and Boyle 1998, and Robertson et 
al. 1999). The methods based on various constraints (e.g., penalty functions) (Osmond 
and Gardner 1982, Decarli and La Vecchia 1987) lack a sound biological basis for the 
constraints (they are used to provide identifiability and there is no particular reason to 
prefer any arbitrary constraint). The availability of statistical software that incorporates 
APC models with linear constraints (GLIM, Francis et al. 1993) has lead to 
considerable popularity of this approach to resolve non-identifiability in APC models 
despite the absence of prior knowledge justifying any specific form of constraints. 
Another method proved to be “…recommended for use in all circumstances” 
(Robertson et al. 1999) is based on estimable functions such as curvatures (Holford 
1983, Clayton and Schifflers 1987, Tango and Kurashina 1987, Tarone and Chu 1996). 
Deviations from linearity can be estimated, whereas this does not apply to linear trends 
(Holford 1983). This method can provide valuable insights into age-period-cohort 
determinants underlying changes in incidence or mortality over age and time despite 
lacking information on linear period or cohort trends. For instance, patterns of cohort 
deviations that “open upward” typically could be viewed as unfavorable as they indicate 
a qualitative acceleration of incidence rates regardless whether the rates increase or 
decline on average (Dinse et al. 1999).  

A specific functional form of age effects (or, alternatively, period or cohort effects) 
also has been suggested as a method to resolve the problem of non-identifiability 
(Holford 1992). The method assumes that there is a plausible background in the 
respective functional specification of age or other effects. Otherwise there is, in 
essence, no difference between this method and the one based on arbitrary constraints. 
Applications of APC models to cancer incidence data are good illustrations of this 
approach. Various epidemiological studies confirm that some cancers increase as a 
power function of age and that there is a biological basis for such an increase (Peto 
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1977). This provides a solid background for using power functions to specify age 
effects in APC models. Holford (1992) discussed this approach in application to cancer 
incidence data. Holford et al. (1994) considered several non-linear APC models for 
cancers. They are based on the multistage model of carcinogenesis (Moolgavkar 1978). 
Here, the underlying biology of carcinogenesis dictates the functional forms of age 
effects that are consistent with the multistage theory. Lee and Lin (1995) also developed 
APC models for cancers, using the biologically plausible model of carcinogenesis in 
human populations.  

Various epidemiological and molecular-biological studies provide compelling 
evidence on the importance of cell proliferation and differentiation in the process of 
carcinogenesis (Moolgavkar et al. 1999). The two-stage model of carcinogenesis 
developed by Moolgavkar and colleagues (Moolgavkar and Venzon 1979, Moolgavkar 
and Knudson 1981, Moolgavkar et al. 1988, Moolgavkar and Luebeck 1990) 
incorporates cell proliferation and differentiation. Hanayama (2001) presented a model 
for projecting cancer death rates, viewing the two-stage model on the Lexis diagram. 
The model deduces the whole range of effects on the Lexis diagram (age, period, and 
cohort) from the cancer development process. The two-stage model of carcinogenesis 
can also be applied to cancer incidence data in the age-period-cohort context. The age-
period-cohort effects reflect the combined influence of various factors (e.g., social, 
behavioral, environmental, medical) on the dynamics of age-specific cancer incidence 
rates over time. All of these factors are interconnected with changes in internal 
(molecular-biological) factors responsible for cancer development. If a convincing 
rationale exists that represents a disease etiology in a specific mathematical model, then 
this possibility is not to be ignored in data analysis. Age-period-cohort analysis of 
cancer incidence data in relation to the two-stage model can help reveal the factors that 
are associated with the time period or birth cohort influence on the respective 
parameters of carcinogenesis in human populations. However, lack of available data on 
age- and time-specific trends in the intensities of cell transformations responsible for 
carcinogenesis (let alone the parameter estimation issues mentioned above in relation to 
non-linear models) can complicate the analysis. New extensive epidemiological and 
molecular-biological studies can be very useful for these purposes. 
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